Blogia
petalofucsia

Matemáticas2

MATEMÁTICAS2: REGRESIÓN. La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

Análisis de la regresión

De Wikipedia, la enciclopedia libre
(Redirigido desde Regresión (estadística))

La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

Contenido

[ocultar]

[editar] Origen del concepto

El término regresión fue introducido por Francis Galton en su libro Natural inheritance (1889) y fue confirmada por su amigo Karl Pearson. Su trabajo se centró en la descripción de los rasgos físicos de los descendientes (variable A) a partir de los de sus padres (variable B). Estudiando la altura de padres e hijos a partir de más de mil registros de grupos familiares, se llegó a la conclusión de que los padres muy altos tenían una tendencia a tener hijos que heredaban parte de esta altura, pero que revelaban también una tendencia a regresar a la media. Galton generalizó esta tendencia bajo la "ley de la regresión universal": «Cada peculiaridad en un hombre es compartida por sus descendientes, pero en media, en un grado menor.»

[editar] Modelos de regresión

[editar] Regresión lineal

Artículo principal: Regresión lineal
  • Regresión lineal simple

Dadas dos variables (Y: variable dependiente; X: independiente) se trata de encontrar una función simple (lineal) de X que nos permita aproximar Y mediante: Ŷ = a + bX

a (ordenada en el origen, constante)b (pendiente de la recta)A la cantidad e=Y-Ŷ se le denomina residuo o error residual.

Así, en el ejemplo de Pearson: Ŷ = 85 cm + 0,5X

Donde Ŷ es la altura predicha del hijo y X la altura del padre: En media, el hijo gana 0,5 cm por cada cm del padre.
  • Regresión lineal múltiple

[editar] Regresión no lineal

Artículo principal: Regresión no lineal

[editar] Enlaces externos

MATEMÁTICAS2: ESTUDIE ESTO: ¿QUÉ PASARÍA SI TODOS LOS NÚMEROS FUESEN SIMÉTRICOS UNOS DE OTROS? ¿SE DARÍA LA PERFECCIÓN? ¿CÓMO SE EXPLICA QUE AÚN NO HAYA PERFECCIÓN? ¿NACIMOS DESORDENADOS?. TRATE DE ORDENAR CON SIMETRÍA TODOS LOS NÚMEROS, ¿QUÉ RESULTADO DA?

Grupo simétrico

De Wikipedia, la enciclopedia libre
Grafo de Cayley de un grupo simétrico de orden 4 (S4) representado como el grupo de rotaciones de un dado convencional.

En matemáticas, el grupo simétrico sobre un conjunto X, denotado por SX es el grupo formado por las funciones biyectivas (permutaciones) de X en sí mismo.

Los subgrupos de SX se denominan grupos de permutaciones. El Teorema de Cayley afirma que todo grupo G es isomorfo a un grupo de permutaciones (ie: un subgrupo del simétrico).

De especial relevancia es el grupo simétrico sobre el conjunto finito X = {1,...,n}, denotado por Sn. El grupo Sn tiene orden n! y no es abeliano para n>2.

 

Contenido

[ocultar]

[editar] Composición de permutaciones

Hay diversas formas de representar una permutación. Podemos escribir una permutación σ en forma de matriz, situando en primera fila los elementos del dominio 1, 2, 3..., y en la segunda las imágenes correspondientes σ(1), σ(2), σ(3),....

Dada dos permutaciones, su composición se realiza siguiendo las reglas usuales de composición de funciones:

Si   sigma =  begin{pmatrix}   1 & 2 & 3 & 4 & 5 & 6    3 & 2 & 4 & 6 & 5 & 1  end{pmatrix}  y   tau =  begin{pmatrix}   1 & 2 & 3 & 4 & 5 & 6    4 & 1 & 2 & 5 & 3 & 6   end{pmatrix}

su composición es:  tau circ sigma =  begin{pmatrix}   1 & 2 & 3 & 4 & 5 & 6    2 & 1 & 5 & 6 & 3 & 4   end{pmatrix}

El cálculo de la composición puede seguirse de un modo visual, recordando que al componer funciones se opera de derecha a izquierda:

Composicion de permutaciones.svg

[editar] Una presentación del grupo

[editar] Generadores

Recordemos que una trasposición es una permutación que intercambia dos elementos y fija los restantes. Toda permutación se descompone como producto de trasposiciones. De este modo, el conjunto de las trasposiciones forma un sistema generador de Sn. Pero es posible reducir aún más este sistema restringiéndonos a las trasposiciones de la forma τi = (i,i + 1). En efecto, para i<j podemos descomponer cualquier trasposición en la forma:

(i,j)=(i,i+1)(i+1,i+2)dots (j-2,j-1)(j-1,j)(j-2,j-1)dots (i+1,i+2)(i,i+1)

[editar] Relaciones elementales

Estos generadores permiten definir una presentación del grupo simétrico, junto con las relaciones:

  • {tau_i}^2 = 1, ,
  • tau_itau_j = tau_jtau_i qquad mbox{si  }  |j-i| > 1,,
  • {(tau_itau_{i+1}})^3=1.,.

[editar] Otros generadores

Es posible igualmente usar como sistema de generadores:

  • Las trasposiciones de la forma (1 i), con i>1.
  • El conjunto formado por solo dos generadores:la trasposición σ=(1 2) y el ciclo c=(1 2 ... n).

[editar] Clases de conjugación

Recordemos que toda permutación puede ser descrita como producto de ciclos disjuntos, y esta descomposición es única salvo el orden de los factores. Las clases de conjugación de Sn se corresponden con la estructura de dicha descomposición en ciclos: dos permutaciones son conjugadas en Sn si y sólo si se obtienen como composición del mismo número de ciclos disjuntos de las mismas longitudes. Por ejemplo, en S5, (1 2 3)(4 5) y (1 4 3)(2 5) son conjugados; pero (1 2 3)(4 5) y (1 2)(4 5) no.

El grupo S3, formado por las 6 permutaciones de tres elementos tiene tres clases de conjugación, listadas con sus números de elementos:

  • La identidad (abc → abc) (1)
  • Las permutaciones que intercambian dos elementos (abc → acb, abc → bac, abc → cba) (3)
  • Las permutaciones ciclicas de los 3 elementos (abc → bca, abc → cab) (2)

El grupo S4, consistente en las 24 permutaciones de 4 elementos tiene 5 clases de conjugación:

  • La identidad (1)
  • Las permutaciones que intercambian dos elementos (6)
  • Las permutaciones que intercambian cíclicamente tres elementos (8)
  • Las permutaciones cíclicas de los cuatro elementos (6)
  • Las permutaciones que intercambian dos elementos entre sí, y también los dos restantes (3)

En general, cada clase de conjugación en Sn se corresponderá con una partición entera de n y podrá ser representada gráficamente por un diagrama de Young. Así, por ejemplo, las cinco particiones de 4 se corresponderían con las cinco clases de conjugación listadas anteriormente:

  1. 1 + 1 + 1 + 1
  2. 2 + 1 + 1
  3. 3 + 1
  4. 4
  5. 2 + 2

[editar] Representaciones del grupo

Si asociamos a cada permutación su matriz permutación obtenemos una representación que en general no es irreducible.[1]

[editar] Representaciones irreducibles

[editar] Referencias

  1. Sternberg, S. Group Theory and Physics. Cambridge University Press, 1994. ISBN 0 521 24870 1

MATEMÁTICAS2: NÚMEROS FRACCIONARIOS. Una fracción es un número que se obtiene dividiendo un número por otro. Suele escribirse en la forma ó ½ ó 1 / 2. En una fracción tal como a/b el número a que es dividido se llama numerador y el número b que divide, divisor o denominador.

Número fraccionario

De Wikipedia, la enciclopedia libre

Una fracción es un número que se obtiene dividiendo un número por otro. Suele escribirse en la forma frac {1}{2} ó ½ ó 1 / 2. En una fracción tal como a/b el número a que es dividido se llama numerador y el número b que divide, divisor o denominador.

Cuando una fracción se escribe en la forma 2 / 3 el numerador queda arriba y el denominador abajo.

Contenido

[ocultar]

[editar] Clasificación de fracciones

Las fracciones pueden clasificarse de la siguiente manera:

[editar] Fracción propia

Artículo principal: Fracción propia

En la que el numerador es menor que el denominador; por ejemplo, frac {3}{4} o ⅔.

Las fracciones propias son las que mejor responden a la denominación de fracción, ya que son parte de la unidad. También se llaman fracciones simples.

[editar] Fracción impropia

Artículo principal: Fracción impropia

En las que el numerador es mayor que el denominador; por ejemplo., 4/3, 8/7, 206/3, 4/1 etc. Si la fracción se escribe como un número entero seguido de una fracción simple -por ejemplo 1 1/3 en vez de 4/3- se trata de una fracción mixta.

[editar] Fracción decimal

Hablando con propiedad, un decimal es cualquier número escrito en notación decimal (esto es, en base diez). No obstante, el término suele utilizarse para designar una fracción decimal, o fracción escrita utilizando el sistema de notación posicional decimal. Lo mismo que para formar grupos en los números enteros se utilizan decenas, cientos, miles, etc., para formarlos en las fracciones decimales se recurre a décimas, centésimas, milésimas, etc. Así, un decimal como 0,05 es igual a 5 centésimas (5/100) y así sucesivamente. Un número como 127,836 es una fracción decimal mixta que se representa:

(1×100) + (2×10) + (7×1) + (8×1/10) + (3×1/100) + (6×1/1000).

Ello equivale a escribir el número como suma de potencias decrecientes de diez (obsérvese que 100=1)

(1×102) + (2×101) + (7×100) + (8×10-1) + (3×10-2)+(6×10-3).

Un decimal puede tener un número finito de dígitos (por ejemplo, 5/8 es igual a 0,625); tales decimales se llaman exactos. También puede ocurrir que el decimal prosiga indefinidamente, esto es, que contenga un número infinito de dígitos; se los llama decimal no exacto.

[editar] Fracción ordinaria

Una fracción ordinaria es el cociente entre dos números. El número que es dividido se llama numerador y el que divide denominador . Si a y b son dos números, entonces la fracción que representa el cociente de a por b se escribe a/b. El concepto de fracción puede ilustrarse (principalmente en casos simples como los de 1/2, 2/3 o 3/4) por medio de círculos y cuadrados.

Como una fracción es una cantidad dividida por otra, su valor no cambia si el numerador y el denominador son multiplicados por un factor común. Si ambos se dividen por su MCD, la fracción ya no puede simplificarse mas.

[editar] Véase también

Números
Complejos mathbb{C}
Reales mathbb{R}
Racionales mathbb{Q}
Enteros mathbb{Z}
Naturales mathbb{N}
Uno
Primos
Compuestos
Cero
Negativos
Fraccionarios
Fracción propia
Fracción impropia
Irracionales
Algebraicos irracionales
Trascendentes
Imaginarios

[editar] Enlaces externos

MATEMÁTICAS2: INVARIABLE. En matemáticas, invariante es algo que no cambia al aplicarle un conjunto de transformaciones. Más formalmente una entidad se considera invariante bajo un conjunto de transformaciones si la imagen transformada de la entidad es indistinguible de la entidad original. La propiedad de ser invariante se conoce como invarianza o invariancia.

Invariante

De Wikipedia, la enciclopedia libre

En matemáticas, invariante es algo que no cambia al aplicarle un conjunto de transformaciones. Más formalmente una entidad se considera invariante bajo un conjunto de transformaciones si la imagen transformada de la entidad es indistinguible de la entidad original. La propiedad de ser invariante se conoce como invarianza o invariancia.

Contenido

[ocultar]

[editar] Invariancia en física

Una noción física fundamental es la de observador. En todas las teorías físicas se presupone la existencia de algún tipo de realidad objetiva y un número potencialmente infinito de observadores diferentes capaces de observar y medir dicha realidad. Todas las teorías físicas incluyen el axioma o principio de objetividad según el cual aunque diferentes observadores pueden llegar a medidas diferentes de la misma realidad objetiva, todas ellas son relacionables mediante reglas generales, es decir, la objetividad del mundo material se refleja en la intersubjetividad de las medidas físicas.

Puede demostrarse que la existencia de intersubjetividad de las medidas conduce a que pueden formarse ciertas expresiones matemáticas que relacionan las medidas que son invariantes en forma o forminvariantes para todos los observadores.

[editar] Invariancia en matemáticas

[editar] Invariancia en programación

[editar] Enlaces externos

MATEMÁTICAS2: TEORÍA DEL ORDEN. EL SUPREMO Y EL ÍNFIMO. Cota inferior se define invirtiendo el orden. Por ejemplo, -5 es una cota inferior de los números naturales como subconjunto de los enteros. Dado un conjunto de conjuntos , una cota superior para éstos conjuntos viene dado por su unión. De hecho, esta cota superior es muy especial: es el más pequeño conjunto que contiene todos los conjuntos dados. Por lo tanto, encontramos la menor cota superior de un conjunto de conjuntos. Este concepto se llama también supremo y para un conjunto S se escribe sup S o VS para su menor cota superior. Inversamente, la mayor cota inferior se la conoce como ínfimo y se denota inf S o ^S. Este concepto desempeña un papel importante en muchos usos de la teoría del orden. Para dos elementos x y y, uno también escribe x v y y x ^ y para sup{x, y} e inf{x, y}, respectivamente.

Teoría del orden

De Wikipedia, la enciclopedia libre

La teoría del orden es una rama de la matemática que estudia varias clases de relaciones binarias que capturan la noción intuitiva del orden matemático. Este artículo da una introducción detallada a este campo e incluye algunas de las definiciones más básicas. Para una rápida búsqueda de un término orden teórico, hay también un glosario de teoría del orden. Una lista de asuntos sobre orden recoge los artículos que existen en relación a esta teoría del orden.

Contenido

[ocultar]

[editar] Trasfondo y motivación

El orden aparece por todas partes - por lo menos, si se trata de matemática y áreas relacionadas tales como la informática. El primer orden que uno típicamente encuentra en la educación matemática de la escuela primaria es el orden ≤ de los números naturales. Este concepto intuitivo es fácilmente extendido a otros conjuntos de números, tal como los enteros y reales. De hecho la idea de ser mayor o menor que otro número es una de las intuiciones básicas de los sistemas de numeración en general (que uno generalmente se interesa también en la diferencia real de dos números, que no viene dada por el orden). Otro ejemplo popular de un orden es el orden lexicográfico de las palabras en un diccionario.

Los tipos antedichos de orden tienen una propiedad especial: cada elemento se puede comparar con cualquier otro elemento, es decir es o mayor, o menor, o igual. Sin embargo, esto no siempre es un requisito deseable. Un ejemplo bien conocido es el orden de los subconjuntos de un conjunto. Si un conjunto contiene los elementos de cierto otro conjunto, entonces se puede decir que es menor o igual. Con todo, hay conjuntos que pueden no ser comparables de este modo, puesto que cada uno puede contener algún elemento que no esté presente en el otro. Por lo tanto, inclusión de subconjuntos es un orden parcial, en comparación con los órdenes totales dados antes.

Alentadas por los amplios usos prácticos de los órdenes, se pueden definir numerosas clases especiales de conjuntos ordenados, algunas de las cuales han llegado a ser campos matemáticos por sí mismos. Además, la teoría del orden no se restringe a las varias clases de relaciones de orden, sino que también considera funciones apropiadas entre ellas. Un ejemplo simple de una propiedad orden teórica viene del análisis donde encontramos con frecuencia a las funciones monótonas.

[editar] Introducción a las definiciones básicas

Esta sección tiene como objetivo dar una primera guía al reino de los conjuntos ordenados. Está dirigida al lector que tiene un conocimiento básico teoría de conjuntos y aritmética y que sabe qué es una relación binaria, pero que no está familiarizado, hasta ahora, con consideraciones teóricas sobre orden.

[editar] Conjuntos parcialmente ordenados

Como ya se hizo alusión arriba, un orden es una relación binaria especial. Por lo tanto consideremos algún conjunto P y una relación binaria ≤ en P. Entonces ≤ es un orden parcial si es reflexiva, antisimétrica, y transitiva, es decir, para todo a, b y c en P, tenemos que:

aa (reflexividad)si ab y bc entonces ac (transitividad)si ab y ba entonces a = b, (antisimetría).

Un conjunto con un orden parcial se llama conjunto parcialmente ordenado, o, en breve, poset (del inglés partially ordered set). El término conjunto ordenado a veces también se utiliza para los posets, mientras esté claro del contexto que no se quiere significar ninguna otra clase de órdenes. Comprobando esta propiedad, se ve inmediatamente que los bien conocidos órdenes de los naturales, enteros, racionales y reales son todos órdenes en el antedicho sentido. Sin embargo, tienen la propiedad adicional de ser total, es decir, para todo a, b en X

ab o ba (totalidad)

este orden se puede también llamar orden lineal o cadena. mientras que muchos órdenes clásicos son lineales, el orden entre subconjuntos de un conjunto proporciona un ejemplo donde éste no es el caso. De hecho, muchas propiedades avanzadas de los posets son interesantes principalmente para un orden no lineal.

[editar] Visualizando órdenes

Antes de proceder con más ejemplos y definiciones, será provechoso poder exhibir un orden de una manera gráfica conveniente, para proporcionar un "cuadro" que uno pueda tener en mente (o en papel) cuando se intente acceder a conceptos más abstractos. Para este propósito se han introducidos los, así llamados, diagramas de Hasse. Estos son grafos donde los vértices son los elementos del poset y la relación de orden está indicada por las aristas y la posición relativa de los vértices. Los órdenes se dibujan de abajo hacia arriba: si un elemento x es menor que y entonces existe una trayectoria de x hasta y que se dirige hacia arriba. A menudo es necesario que la conexión entre puntos se intersequen, pero los puntos nunca deben ser situados en conexión directa entre otros dos puntos.

Aún los conjuntos infinitos pueden a veces ser ilustrados por diagramas similares, usando puntos suspensivos (...) después de dibujar un suborden finito que sea lo suficientemente instructivo. Esto funciona bien para los números naturales, pero falla para los reales, donde no existe el inmediato sucesor. Sin embargo, frecuentemente se obtiene una intuición relacionada con diagramas de este tipo.

Todos los órdenes antedichos son muy comunes en matemática, sin embargo hay también ejemplos que uno no considera a menudo como órdenes. Por ejemplo, la relación de identidad "=" en un conjunto es un orden parcial. Dentro de este orden, cualesquiera dos (i.e. distintos) elementos son incomparables. Es también la única relación que es un orden parcial y una relación de equivalencia. El diagrama de Hasse de tal orden discreto es solamente una colección de puntos etiquetados, sin ninguna arista entre ellos.

Otro ejemplo viene dado por la relación de divisibilidad "|". Para dos números naturales n y m, escribimos n|m si n divide a m sin resto. Uno ve fácilmente que esto da realmente un orden parcial. Un ejercicio instructivo es dibujar el diagrama de Hasse para el conjunto de los números naturales que son menores o iguales que, digamos, 13, ordenados por |.

[editar] Elementos especiales dentro de un orden

En un conjunto parcialmente ordenado hay algunos elementos que desempeñan un papel especial. El ejemplo más básico está dado por el mínimo de un poset. Por ejemplo, 0 es el mínimo de los números naturales y el conjunto vacío es el mínimo bajo el orden de subconjuntos. Formalmente, esto se puede describir por la propiedad:

0 ≤ a, para todo elemento a del conjunto ordenado.

Es frecuente encontrar la notación 0 para el mínimo, incluso cuando no se refiera a números. Sin embargo, en un orden de un conjunto numérico, esta notación puede ser inadecuada o ambigua, puesto que el número 0 no siempre es el mínimo. Un ejemplo es el antedicho orden de divisibilidad |, donde 1 es el mínimo puesto que divide a todo el resto de números. Por otra parte, 0 es un número que se divide por todo el resto de números. ¡Por lo tanto es el máximo del orden! Otros términos frecuentes para estos elementos son fondo y tapa o cero y uno. Pueden no existir los elementos "mínimo" o "máximo", como demuestra el ejemplo de los números reales. Por otra parte, si existen son siempre únicos. En contraste, consideremos la relación de divisibilidad | en el conjunto {2, 3, 4, 5, 6}. Aunque este conjunto no tiene ni tapa ni fondo, los elementos 2, 3, y 5 no tienen ningún elemento debajo, mientras que 4, 5, y 6 no tienen ninguno otro número arriba. Tales elementos se llaman minimales y maximales, respectivamente. Formalmente, un elemento m es minimal si:

am implica a = m, para todo elemento a.

Intercambiando ≤ con ≥ obtenemos la definición de maximal. Como el ejemplo demuestra, puede haber muchos elementos minimales o maximales y algún elemento puede ser maximal y minimal (e.g. 5 arriba). Sin embargo, si hay un elemento mínimo, entonces es el único elemento minimal del orden. (Si se sigue estrictamente la definición dada. Lamentablemente hay una tradición matemática "a contrario": considerar los minimales y maximales en el conjunto despojado de su máximo y su mínimo, si los hubiere. Esto debe recordarse. N.T.). Una vez más, en los posets no siempre hay infinitos elementos maximales - el conjunto de todos los subconjuntos finitos en un conjunto infinito dado, ordenado por inclusión de subconjuntos, proporciona uno, entre muchos, contraejemplo. Una herramienta importante para asegurar la existencia de elementos maximales bajo ciertas condiciones es el Lema de Zorn.

Los subconjuntos de un conjunto parcialmente ordenado heredan el orden. Ya aplicamos esto al considerar el subconjunto {2, 3, 4, 5, 6} de los números naturales con el orden de divisibilidad inducido. Hay también elementos de un poset que son especiales con respecto a cierto subconjunto del orden. Esto conduce a la definición de cota superior. Dado un subconjunto S de cierto poset P, una cota superior de S es un elemento b de P que está sobre todo elemento de S. Formalmente, esto significa que

sb, para todo s en S.

Cota inferior se define invirtiendo el orden. Por ejemplo, -5 es una cota inferior de los números naturales como subconjunto de los enteros. Dado un conjunto de conjuntos , una cota superior para éstos conjuntos viene dado por su unión. De hecho, esta cota superior es muy especial: es el más pequeño conjunto que contiene todos los conjuntos dados. Por lo tanto, encontramos la menor cota superior de un conjunto de conjuntos. Este concepto se llama también supremo y para un conjunto S se escribe sup S o VS para su menor cota superior. Inversamente, la mayor cota inferior se la conoce como ínfimo y se denota inf S o ^S. Este concepto desempeña un papel importante en muchos usos de la teoría del orden. Para dos elementos x y y, uno también escribe x v y y x ^ y para sup{x, y} e inf{x, y}, respectivamente.

Usando Wikipedia TeX markup, uno puede también escribir vee y wedge, así como símbolos grandes bigvee y bigwedge. Observe, sin embargo, que todos esos símbolos pueden no tener símbolo de tamaño correspondiente al de la fuente del texto estándar y, por tanto, se prefiere utilizarlos en líneas adicionales. Muchos de los navegadores de hoy son incapaces de representar ∨ para v y ∧ para ^ en algunas plataformas, y por lo tanto se evita aquí.

Considere otro ejemplo en la relación | para los números naturales. La menor cota superior de dos números es el menor número que es múltiplo de ambos, es decir el mínimo común múltiplo. Mayor cota inferior es, alternativamente, el máximo común divisor.

[editar] Dualidad

En las anteriores definiciones, a menudo, observamos que un concepto puede ser definido por invertir simplemente el orden en una definición anterior. Este es el caso para "menor" y "mayor", para "mínimo" y "máximo", para "cota superior " y "cota inferior", etcétera. Esto es una situación general en teoría de orden: Un orden dado se puede invertir con solamente intercambiar su dirección, pictóricamente dar vuelta el diagrama de Hasse de arriba para abajo. Esto da el, así llamado, orden dual, inverso u opuesto.

Cada definición orden teórica tiene su dual: es la noción que se obtiene al aplicar la definición al orden inverso. Dada la simetría de todos los conceptos, esta operación preserva los teoremas del orden parcial. Para un resultado matemático dado, se puede, simplemente, invertir el orden y substituir todo definición por su dual y obtener otro teorema válido. Esto es importante y útil, puesto que uno obtiene dos teoremas al precio de uno. Más detalle y ejemplos se pueden encontrar en el artículo sobre dualidad en teoría de orden.

[editar] Construyendo nuevos órdenes

Hay muchas maneras de construir órdenes, o para combinar órdenes en uno nuevo. El orden dual es un primer ejemplo. Otra importante construcción es el producto cartesiano de dos conjuntos parcialmente ordenados, junto con el orden producto en pares de elementos. Esto se define por los órdenes originales haciendo (a, x) ≤ (b, y) si ab y xy. La unión disjunta de dos posets es otra típica construcción, donde el orden es exactamente la unión de los órdenes originales.

Como en el caso del orden usual de números, cada orden parcial ≤ da lugar a un orden estricto <, al definir a < b si ab y no ba. Esta transformación puede ser invertida haciendo ab si a < b o a = b.

[editar] Funciones entre órdenes

Es razonable requerir que las funciones entre conjuntos parcialmente ordenados tengan ciertas propiedades adicionales, que se relacionen con la relación de orden de los dos conjuntos. La condición más fundamental que se presenta en este contexto es la monotonía. Un función f de un poset P a un poset Q es monótona u orden preservante, si ab en P implica f(a) ≤ f(b) en Q. La conversa de esta implicación conduce a una función que es orden reflectante, es decir una función f como arriba para la cuál f(a) ≤ f(b) implica ab. Por otra parte, una función puede también ser orden inversora o antítona, si ab implica f(a) ≥ f(b).

Una inmersión de orden es una función f entre órdenes que es orden preservante y orden reflectante. Ejemplos para esta definición se encuentran fácilmente. Por ejemplo, función que mapea un número natural en su sucesor es claramente monótona con respecto al orden natural. Cualquier función de un orden discreto, es decir un conjunto ordenado por el orden identidad "=", es también monótono. Mapear cada número natural al correspondiente número real da un ejemplo para una inmersión de orden. El complemento conjuntista en un conjunto de partes es un ejemplo de una función antítona.

Una importante pregunta es cuándo dos órdenes son "esencialmente iguales", es decir cuándo son lo mismo salvo retitular elementos. Un isomorfismo de orden es una función que define tal renombrar. Un isomorfismo de orden es una función monótona biyectiva que tiene una inversa monótona. Esto es equivalente a una inmersión de orden sobreyectiva. Por lo tanto, la imagen f(P) de una inmersión de orden es siempre isomorfa a P, lo que justifica el término "inmersión".

Un más elaborado tipo de función es la, así llamada, conexión de Galois. Conexiones de Galois monótonas pueden ser vistas como una generalización de los isomorfismos de orden, puesto que están constituidas por dos funciones en inversa dirección, que no son inversas absolutas una de la otra, pero tienen cercana relación.

Otro tipo especial de endofunción en un poset es el operador de clausura, que no solamente es monotónico, sino también idempotente, es decir. f(x) = f(f(x)), y extensivo, es decir. xf(x). éste tiene mucho uso en todo clase de "clausuras" que aparecen en matemática.

Además de compatible con la mera relación de orden, una función entre posets puede también comportarse bien con respecto a elementos especiales y construcciones. Por ejemplo, cuando se habla de posets con menor elemento, parece razonable considerar solamente una función monotónica que preserve este elemento, es decir que mapee menor elemento en menor elemento. Si el ínfimo binario ^ existe, entonces una propiedad razonable puede ser requerir que f(x^y) = f(x) ^ f(y), para todo x y y. Todas estas propiedades, y de hecho muchas más, pueden ser agrupadas bajo la etiqueta función que preserva límite.

Finalmente, uno puede invertir la visión, cambiar funciones de orden a orden de funciones. De hecho, las funciones entre dos posets P y Q pueden ser ordenadas vía el orden punto a punto. Para dos funciones f y g, se tiene fg si f(x) ≤ g(x) para todo elemento x en P. Esto ocurrirá por ejemplo en teoría de dominios, donde los espacios funcionales desempeñan un importante papel.

[editar] Tipos especiales de orden

Muchas de las estructuras que son estudiadas en teoría de orden emplean relaciónes con propiedades adicionales. De hecho, algunas relaciones que no son de orden parcial son de especial interés. Principalmente, el concepto de preorden tiene que ser mencionado. Un preorden es una relación que es reflexiva y transitiva, pero no necesariamente antisimétrica. Cada preorden induce una relación de equivalencia entre elementos, donde a es equivalente a b, si ab y ab. Los preórdenes pueden ser convertidos en órdenes identificando todo elemento equivalente con respecto a esta relación.

Tipos básicos de órdenes especiales ya se dieron en forma de orden total. Una simple pero útil propiedad adicional conduce al, así llamado, buen orden, dentro del que todo subconjunto no vacío tiene un menor elemento (también denominado primer elemento). Muchos otros tipos de orden se presentan cuando se garantiza la existencia de ínfimos y supremos de ciertos conjuntos. Centrándose en este aspecto, generalmente referido como completitud de órdenes, se obtiene:

  • Posets acotados, es decir posets con menor y mayor elementos (que son precisamente supremo e ínfimo del conjunto vacío),
  • reticulados, en que cada conjunto finito no vacío tiene supremo e ínfimo,

Sin embargo, uno puede ir incluso más allá: si todo ínfimo finito no vacío existe, entonces ^ puede ser visto como una operación binaria total en el sentido del álgebra universal. Por lo tanto, en un reticulado, dos operaciones ^ y v están disponibles, y se puede definir nuevas propiedades dando identidades, tal como

x ^ (y v z) = (x ^ y) v (x ^ z), para todo x, y, y z.

Este condición se llama distributividad y dar lugar a los reticulados distributivos. Hay algunas otras importantes leyes de distributividad que son discutidas en el artículo sobre la distributividad en teorías de orden. Algunas estructuras de orden adicionales que son a menudo especificadas vía operación algebraica y definiendo identidades son

en que ambas introducen una nueva operación ~ llamada negación. Ambas estructuras desempeñan un papel en lógica matemática y especialmente las álgebras de Boole tienen importante uso en informática. Finalmente, varias estructuras en matemática combinan orden con operaciones aún más algebraicas, como el caso de quantales, que permite la definición de una operación de adición.

Existen muchas otras importantes propiedades de los posets. Por ejemplo, un poset es localmente finito si cada intervalo cerrado [a, b] en él es finito. Los posets localmente finitos dan lugar a álgebras de incidencia que alternadamente pueden ser utilizadas para definir característica de Euler de posets finitos acotados.

[editar] Subconjuntos de conjuntos ordenados

En un conjunto ordenado, uno puede definir muchos tipos especiales de subconjuntos basados en el orden dado. Un ejemplo simple son los conjuntos superiores, es decir conjuntos que contienen todo elemento que esté sobre ellos en el orden. Formalmente, la clausura superior de un conjunto S en un poset P viene dado por el conjunto {x en P| hay algún y en S con yx}. Un conjunto que es igual a su clausura superior se llama un conjunto superior. conjunto inferior es definido dualmente.

Subconjuntos inferiores más complicados son los ideales, que tienen la propiedad adicional que cada dos de sus elementos tiene cota superior dentro del ideal. Su noción dual son los filtros. Un concepto relacionado es el de subconjunto dirigido, que como un ideal contiene cota superior de un subconjunto finito, pero no tiene porque ser un conjunto inferior. Además, a menudo se generaliza a conjuntos preordenados.

Un subconjunto que es - como sub-poset - linealmente ordenado, se llama una cadena. La noción opuesta, anticadena, es un subconjunto que no contiene ningún par de elementos comparables, es decir que es un orden discreto.

[editar] Áreas matemáticas relacionadas

aunque la mayoría de las áreas matemáticas usan orden de uno u otra manera, también hay algunas teorías que tienen una relación que va mucho más allá de la mera utilización. Junto con su importante punto de contacto con la teoría de orden, algunas serán presentadas abajo.

[editar] Álgebra universal

Según lo ya mencionado, los métodos y el formalismo del álgebra universal son una herramienta importante para muchas consideraciones orden teóricas. Aparte de formalizar órdenes en términos de estructuras algebraicas que satisfacen ciertas identidades, se pueden también establecer otras conexiones con el álgebra. Un ejemplo es la correspondencia entre las álgebras de Boole y los anillos de Boole. Otros aspectos tienen que ver con la existencia de construcciones libres, tal como los reticulados libres basados en un conjunto de generadores. Además, los operadores de clausura son importantes en el estudio del álgebra universal.

[editar] Topología

En topología el orden desempeña un muy prominente papel. De hecho, el conjunto de los abiertos proporciona un clásico ejemplo de un reticulado completo, más exactamente un álgebra de Heyting completa (o "marco" o "locale"). Los filtros y las redes son nociones relacionadas con la teoría de orden y el operador clausura conjuntista puede ser utilizado para definir una topología. Más allá de esta relación, la topología de puede mirar únicamente en términos del reticulado de conjuntos abiertos, que conduce al estudio de la topología sin puntos. Además, un preorden natural de elementos del conjunto subyacente de una topología viene dada por el, así llamado, orden de especialización, que es realmente un orden parcial si la topología es T0.

Inversamente, en teoría de orden, uno a menudo hace uso de resultados topológicos. Hay varias maneras de definir subconjuntos de un orden que pueden ser considerados como conjunto abiertos de una topología. Especialmente, es interesante considerar topologías en un poset (X, ≤) que reobtiene ≤ como su orden de especialización. La más fina de tales topologías es la topología de Alexandrov, dada al tomar todos los conjuntos superiores ("upper") como abiertos. Inversamente, la más gruesa topología que induce el orden de especialización es la topología superior, que tiene los complementos de los ideales principales (es decir conjuntos de la forma { y en X|yx} para cada x) como una subbase. Adicionalmente, una topología con orden de especialización ≤ puede ser orden consistente, significando que sus conjuntos abiertos son "inaccesibles por supremos dirigidos" (con respecto ≤). La topología más fina de un orden consistente es la topología de Scott, que es más gruesa que la topología de Alexandrov. Una tercera topología importante en esta línea es la topología de Lawson. Hay cercanas conexiones entre estas topologías y los conceptos de la teoría de orden. Por ejemplo, una función preserva supremos dirigidos si y sólo si es continuo con respecto a la topología de Scott (por este razón esta propiedad orden teórica es también llamada continuidad de Scott).

[editar] Teoría de categorías

La visualización de órdenes con diagramas de Hasse tiene una generalización directa: en vez exhibir elemento menores bajo los mayores, la dirección del orden se puede también representar dando la dirección de las aristas del grafo. De esta manera, cada orden se ve como equivalente a un grafo dirigido acíclico, donde los nodos son los elementos del poset y hay una trayectoria dirigida de a a b si y solamente si ab. Eliminando el requisito acíclico, uno puede también obtener todos los preórdenes.

Cuando es equipado con todas las aristas transitivas, estos grafos son solamente categorías especiales, donde los elementos son los objetos y cada conjunto de morfismos entre dos elementos es a lo sumo un singletón. Funciones entre órdenes se convierten en funtores entre categorías. Interesantemente, muchas ideas de la teoría de orden son simplemente pequeñas versiones de los conceptos de la teoría de las categorías. Por ejemplo, un ínfimo es precisamente un producto categórico. Más en general, uno puede subsumir supremos e ínfimos bajo la noción abstracta de un límite categórico (o colímite, respectivamente). Otro lugar en donde las ideas categoriales surgen es el concepto de una conexión de Galois (monótona), que es precisamente igual a un par de funtores adjuntos.

Pero la teoría de las categorías también tiene un impacto en la teoría de orden de mayor escala. Clases de posets con funciones apropiadas según lo discutido arriba forman interesantes categorías. A menudo uno puede también establecer construcción de órdenes, como el orden producto, en término de categoría. Otras intuiciones resultan cuando categorías de orden resultan equivalentes categóricas a otra categoría, por ejemplo de espacios topológicos. Este línea de investigación conduce a varios teoremas de representación, a menudo recogidos bajo la etiqueta dualidad de Stone.

[editar] Esquema de temas relacionados

Teoría del orden
 
Bien ordenado
Orden total
Parcialmente ordenado
Preordenado
Relación reflexiva
Relación transitiva
Relación antisimétrica
Relación total
Orden bien fundamentado
 

[editar] Referencias

  • G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous Lattices and Domains, In Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge University Press, 2003. ISBN 0-521-80338-1

HISTORIA12: EL SUPREMO. En matemáticas, dado un subconjunto S de un conjunto parcialmente ordenado (P,

Supremo

De Wikipedia, la enciclopedia libre
Un conjunto A de números reales (representados por círculos azules), un conjunto de cotas superiores de A (círculos rojos), y el mínimo de las cotas superiores, el supremo de A(diamante rojo).

En matemáticas, dado un subconjunto S de un conjunto parcialmente ordenado (P, <), el supremo de S, si existe, es el mínimo elemento de P que es mayor o igual a cada elemento de S. En otras palabras, es la mínima de las cotas superiores de S. El supremo de un conjunto S comumente se denota sup(S).

[editar] Propiedades

  • Si el supremo existe, entonces es único
  • sup(A cup B)= max{sup(A),sup(B)}, si es que dichos supremos existen
  • Un conjunto tiene máximo, si y solo si contiene a su supremo

[editar] Ejemplos

  • En el campo de los números reales, todo subconjunto no vacio, acotado superiormente tiene supremo.
  • sup { 1, 2, 3 } = 3,
  • sup { x in mathbb{R} | 0 < x < 1 }  =  sup { x in mathbb{R} | 0 leq x  leq 1 } = 1,
  • sup { x in mathbb{Q} | x^2 < 2 } = sqrt{2},
  • sup { (-1)^n - frac{1}{n} | n in mathbb{N} } = 1,

[editar] Referencias

MATEMÁTICAS2: SISTEMA BINARIO. ¿QUE PASA SI PONEMOS TODOS LOS NÚMEROS EN BASE DOS? ¿SE POTENCIAN?. Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental. Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendiera el cómputo binario.

Sistema binario

De Wikipedia, la enciclopedia libre
Para otros usos de este término, véase Sistema binario (astronomía).
 

El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).

Contenido

[ocultar]

[editar] Historia del sistema binario

Página del artículo Explication de l'Arithmétique Binaire de Leibniz.

El antiguo matemático indio Pingala presentó la primera descripción que se conoce de un sistema de numeración binario en el siglo III a. C.

Una serie completa de 8 trigramas y 64 hexagramas (análogos a 3 bit) y números binarios de 6 bit eran conocidos en la antigua China en el texto clásico del I Ching. Series similares de combinaciones binarias también han sido utilizadas en sistemas de adivinación tradicionales africanos, como el Ifá, así como en la geomancia medieval occidental.

Un arreglo binario ordenado de los hexagramas del I Ching, representando la secuencia decimal de 0 a 63, y un método para generar el mismo fue desarrollado por el erudito y filósofo Chino Shao Yong en el siglo XI. Sin embargo, no hay ninguna prueba de que Shao entendiera el cómputo binario.

En 1605 Francis Bacon habló de un sistema por el cual las letras del alfabeto podrían reducirse a secuencias de dígitos binarios, las cuales podrían ser codificadas como variaciones apenas visibles en la fuente de cualquier texto arbitrario.

El sistema binario moderno fue documentado en su totalidad por Leibniz, en el siglo XII, en su artículo "Explication de l'Arithmétique Binaire". En él se mencionan los símbolos binarios usados por matemáticos chinos. Leibniz utilizó el 0 y el 1, al igual que el sistema de numeración binario actual.

En 1854, el matemático británico George Boole publicó un artículo que marcó un antes y un después, detallando un sistema de lógica que terminaría denominándose Álgebra de Boole. Dicho sistema desempeñaría un papel fundamental en el desarrollo del sistema binario actual, particularmente en el desarrollo de circuitos electrónicos.

[editar] Aplicaciones

En 1937, Claude Shannon realizó su tesis doctoral en el MIT, en la cual implementaba el Álgebra de Boole y aritmética binaria utilizando relés y conmutadores por primera vez en la historia. Titulada Un Análisis Simbólico de Circuitos Conmutadores y Relés, la tesis de Shannon básicamente fundó el diseño práctico de circuitos digitales.

En noviembre de 1937, George Stibitz, trabajando por aquel entonces en los Laboratorios Bell, construyó una computadora basada en relés —a la cual apodó "Modelo K" (porque la construyó en una cocina, en inglés "kitchen")— que utilizaba la suma binaria para realizar los cálculos. Los Laboratorios Bell autorizaron un completo programa de investigación a finales de 1938, con Stibitz al mando. El 8 de enero de 1940 terminaron el diseño de una "Calculadora de Números Complejos", la cual era capaz de realizar cálculos con números complejos. En una demostración en la conferencia de la Sociedad Americana de Matemáticas, el 11 de septiembre de 1940, Stibitz logró enviar comandos de manera remota a la Calculadora de Números Complejos a través de la línea telefónica mediante un teletipo. Fue la primera máquina computadora utilizada de manera remota a través de la línea de teléfono. Algunos participantes de la conferencia que presenciaron la demostración fueron John Von Neumann, John Mauchly y Norbert Wiener, quien escribió acerca de dicho suceso en sus diferentes tipos de memorias en la cual alcanzó diferentes logros.

Véase también: Código binario

[editar] Representación

Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de estar en dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario:

1 0 1 0 0 1 1 0 1 0
| - | - - | | - | -
x o x o o x x o x o
y n y n n y y n y n

El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En una computadora, los valores numéricos pueden representar dos voltajes diferentes; también pueden indicar polaridades magnéticas sobre un disco magnético. Un "positivo", "sí", o "sobre el estado" no es necesariamente el equivalente al valor numérico de uno; esto depende de la nomenclatura usada.

De acuerdo con la representación más habitual, que es usando números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1. Los números binarios se escriben a menudo con subíndices, prefijos o sufijos para indicar su base. Las notaciones siguientes son equivalentes:

  • 100101 binario (declaración explícita de formato)
  • 100101b (un sufijo que indica formato binario)
  • 100101B (un sufijo que indica formato binario)
  • bin 100101 (un prefijo que indica formato binario)
  • 1001012 (un subíndice que indica base 2 (binaria) notación)
  •  %100101 (un prefijo que indica formato binario)
  • 0b100101 (un prefijo que indica formato binario, común en lenguajes de programación)

[editar] Conversión entre binario y decimal

[editar] Decimal a binario

Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, éste será el número binario que buscamos.

EjemploTransformar el número decimal 131 en binario. El método es muy simple:
131 dividido entre 2 da 65 y el resto es igual a 1
65 dividido entre 2 da 32 y el resto es igual a 1
32 dividido entre 2 da 16 y el resto es igual a 0
16 dividido entre 2 da 8 y el resto es igual a 0
8 dividido entre 2 da 4 y el resto es igual a 0
4 dividido entre 2 da 2 y el resto es igual a 0
2 dividido entre 2 da 1 y el resto es igual a 0

-> Ordenamos los restos, teniendo en cuenta que el último valor de la division es menor de 2 y empezamos por ese resultado al primero de los restos: 10000011

En sistema binario, 131 se escribe 10000011

EjemploTransformar el número decimal 100 en binario.

Conversion.JPG

Otra forma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo entre dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba.

Ejemplo
100|0
50|0
25|1 --> 1, 25-1=24 y seguimos dividiendo por 2
12|0
6|0
3|1
1|1 --> (100)10 = (1100100)2

Existe un último método denominado de distribución. Consiste en distribuir los unos necesarios entre las potencias sucesivas de 2 de modo que su suma resulte ser el número decimal a convertir. Sea por ejemplo el número 151, para el que se necesitarán las 8 primeras potencias de 2, ya que la siguiente, 28=256, es superior al número a convertir. Se comienza poniendo un 1 en 128, por lo que aún faltarán 23, 151 - 128 = 23, para llegar al 151. Este valor se conseguirá distribuyendo unos entre las potencias cuya suma dé el resultado buscado y poniendo ceros en el resto. En el ejemplo resultan ser las potencias 4, 2, 1 y 0, esto es, 16, 4, 2 y 1, respectivamente.

Ejemplo
  20=   1|1
21= 2|1
22= 4|1
23= 8|0
24= 16|1
25= 32|0
26= 64|0
27= 128|1 128 + 16 + 4 + 2 + 1 = (151)10 = (10010111)2

[editar] Decimal (con decimales) a binario

Para transformar un número del sistema decimal al sistema binario:

  1. Se transforma la parte entera a binario. (Si la parte entera es 0 en binario será 0, si la parte entera es 1 en binario será 1, si la parte entera es 5 en binario será 101 y así sucesivamente).
  2. Se sigue con la parte fraccionaria, multiplicando cada número por 2. Si el resultado obtenido es mayor o igual a 1 se anota como un uno (1) binario. Si es menor que 1 se anota como un 0 binario. (Por ejemplo, al multiplicar 0.6 por 2 obtenemos como resultado 1.2 lo cual indica que nuestro resultado es un uno (1) en binario, solo se toma la parte entera del resultado).
  3. Después de realizar cada multiplicación, se colocan los números obtenidos en el orden de su obtención.
  4. Algunos números se transforman en dígitos periódicos, por ejemplo: el 0.1.

 

Ejemplo
0,3125 (decimal)   => 0,0101 (binario).
Proceso:
0,3125 · 2 = 0,625 => 0
0,625 · 2 = 1,25 => 1
0,25 · 2 = 0,5 => 0
0,5 · 2 = 1 => 1
En orden: 0101 -> 0,0101 (binario)
Ejemplo
0,1 (decimal) => 0,0 0011 0011 ... (binario). 
Proceso:
0,1 · 2 = 0,2 ==> 0
0,2 · 2 = 0,4 ==> 0
0,4 · 2 = 0,8 ==> 0
0,8 · 2 = 1,6 ==> 1
0,6 · 2 = 1,2 ==> 1
0,2 · 2 = 0,4 ==> 0 <--se repiten las cuatro cifras, periódicamente
0,4 · 2 = 0,8 ==> 0 <-
0,8 · 2 = 1,6 ==> 1 <-
0,6 · 2 = 1,2 ==> 1 <- ...
En orden: 0 0011 0011 ... => 0,0 0011 0011 ... (binario periódico)
Ejemplo
5.5 = 5,5
5,5 (decimal) => 101,1 (binario).
Proceso:
5 => 101
0,5 · 2 = 1 => 1
En orden: 1 (un sólo digito fraccionario) -> 101,1 (binario)
Ejemplo
6,83 (decimal)   => 110,110101000111 (binario).
Proceso:
6 => 110
0,83 · 2 = 1,66 => 1
0,66 · 2 = 1,32 => 1
0,32 · 2 = 0,64 => 0
0,64 · 2 = 1,28 => 1
0,28 · 2 = 0,56 => 0
0,56 · 2 = 1,12 => 1
0,12 · 2 = 0,24 => 0
0,24 · 2 = 0,48 => 0
0,48 · 2 = 0,96 => 0
0,96 · 2 = 1,92 => 1
0,92 · 2 = 1,84 => 1
0,84 · 2 = 1,68 => 1
En orden: 110101000111 (binario)
Parte entera: 110 (binario)
Encadenando parte entera y fraccionaria: 110,110101000111 (binario)

[editar] Binario a decimal

Para realizar la conversión de binario a decimal, realice lo siguiente:

  1. Inicie por el lado derecho del número en binario, cada cifra multiplíquela por 2 elevado a la potencia consecutiva (comenzando por la potencia 0, 20).
  2. Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.

Ejemplos:

  • (Los números de arriba indican la potencia a la que hay que elevar 2)

overset{5}{mathop{1}},overset{4}{mathop{1}},overset{3}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{0}},overset{0}{mathop{1}},_{2}=1cdot 2^{5}+1cdot 2^{4}+0cdot 2^{3}+1cdot 2^{2}+0cdot 2^{1}+1cdot 2^{0}=32+16+0+4+0+1=53

overset{7}{mathop{1}},overset{6}{mathop{0}},overset{5}{mathop{0}},overset{4}{mathop{1}},overset{3}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{1}},overset{0}{mathop{1}},_{2}=1cdot 2^{7}+0cdot 2^{6}+0cdot 2^{5}+1cdot 2^{4}+0cdot 2^{3}+1cdot 2^{2}+1cdot 2^{1}+1cdot 2^{0}=128+0+0+16+0+4+2+1=151

overset{5}{mathop{1}},overset{4}{mathop{1}},overset{3}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{1}},overset{0}{mathop{1}},_{2}=1cdot 2^{5}+1cdot 2^{4}+0cdot 2^{3}+1cdot 2^{2}+1cdot 2^{1}+1cdot 2^{0}=32+16+0+4+2+1=55

También se puede optar por utilizar los valores que presenta cada posición del número binario a ser transformado, comenzando de derecha a izquierda, y sumando los valores de las posiciones que tienen un 1.

Ejemplo

El número binario 1010010 corresponde en decimal al 82. Se puede representar de la siguiente manera:

overset{64}{mathop{1}},overset{32}{mathop{0}},overset{16}{mathop{1}},overset{8}{mathop{0}},overset{4}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{0}},_{2}

entonces se suman los números 64, 16 y 2:

overset{64}{mathop{1}},overset{32}{mathop{0}},overset{16}{mathop{1}},overset{8}{mathop{0}},overset{4}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{0}},_{2}=64+16+2=82

Para cambiar de binario con decimales a decimal se hace exactamente igual, salvo que la posición cero (en la que el dos es elevado a la cero) es la que está a la izquierda de la coma y se cuenta hacia la derecha a partir de -1:

begin{align}   & overset{5}{mathop{1}},overset{4}{mathop{1}},overset{3}{mathop{0}},overset{2}{mathop{1}},overset{1}{mathop{0}},overset{0}{mathop{1}},,overset{-1}{mathop{1}},overset{-2}{mathop{0}},overset{-3}{mathop{1}},=1cdot 2^{5}+1cdot 2^{4}+0cdot 2^{3}+1cdot 2^{2}+0cdot 2^{1}+1cdot 2^{0}+1cdot 2^{-1}+0cdot 2^{-2}+1cdot 2^{-3}=    & =32+16+0+4+0+1+frac{1}{2^{1}}+frac{0}{2^{2}}+frac{1}{2^{3}}=32+16+0+4+0+1+0,5+0+0,125=53,625   end{align}

[editar] Binario a decimal (con parte fraccionaria binaria)

1. Inicie por el lado izquierdo (la primera cifra a la derecha de la coma), cada número multiplíquelo por 2 elevado a la potencia consecutiva a la inversa (comenzando por la potencia -1, 2-1).

2.Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.

Ejemplos
  • 0,101001 (binario) = 0,640625(decimal). Proceso:
1 · 2 elevado a -1 = 0,5
0 · 2 elevado a -2 = 0
1 · 2 elevado a -3 = 0,125
0 · 2 elevado a -4 = 0
0 · 2 elevado a -5 = 0
1 · 2 elevado a -6 = 0,015625
La suma es: 0,640625
  • 0.110111 (binario) = 0,859375(decimal). Proceso:
1 · 2 elevado a -1 = 0,5
1 · 2 elevado a -2 = 0,25
0 · 2 elevado a -3 = 0
1 · 2 elevado a -4 = 0,0625
1 · 2 elevado a -5 = 0,03125
1 · 2 elevado a -6 = 0,015625
La suma es: 0,859375

[editar] Operaciones con números binarios

[editar] Suma de números binarios

La tabla de sumar para números binarios es la siguiente:

  +  0  1
  0  0  1
  1  110

Las posibles combinaciones al sumar dos bits son:

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10

Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente, en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.

Ejemplo
        1
10011000
+ 00010101
———————————
10101101

Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).

[editar] Resta de números binarios

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.

Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:

  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)

La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.

Ejemplos
        10001                           11011001    
-01010 -10101011
—————— —————————
00111 00101110

En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.

Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:

  • Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
        100110011101             1001     1001     1101
-010101110010 -0101 -0111 -0010
————————————— = ————— ————— —————
010000101011 0100 0010 1011
  • Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo.
Ejemplo

La siguiente resta, 91 - 46 = 45, en binario es:

        1011011                                             1011011
-0101110 el C2 de 0101110 es 1010010 +1010010
———————— ————————
0101101 10101101

En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.

Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:

        11011011                                            11011011
-00010111 el C2 de 00010111 es 11101001 +11101001
————————— —————————
11000100 111000100

Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.

  • Utilizando el complemento a uno. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit que se desborda.

[editar] Producto de números binarios

La tabla de multiplicar para números binarios es la siguiente:

  ·  0  1
  0  0  0
  1  0  1

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.

Por ejemplo, multipliquemos 10110 por 1001:

        10110       
1001
—————————
10110
00000
00000
10110
—————————
11000110

En sistemas electrónicos, donde suelen usarse números mayores, se utiliza el método llamado algoritmo de Booth.

                 11101111
111011
__________
11101111
11101111
00000000
11101111
11101111
11101111
______________
11011100010101

[editar] División de números binarios

La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.

Ejemplo

Dividir 100010010 (274) entre 1101 (13):

 100010010 |1101
——————
-0000 010101
———————
10001
-1101
———————
01000
- 0000
———————
10000
- 1101
———————
00011
- 0000
———————
01110
- 1101
———————
00001

[editar] Conversión entre binario y octal

[editar] Binario a octal

Para realizar la conversión de binario a octal, realice lo siguiente:

1) Agrupe la cantidad binaria en grupos de 3 en 3 iniciando por el lado derecho. Si al terminar de agrupar no completa 3 dígitos, entonces agregue ceros a la izquierda.

2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:

Número en binario000001010011100101110111
Número en octal01234567

3) La cantidad correspondiente en octal se agrupa de izquierda a derecha.

Ejemplos
  • 110111 (binario) = 67 (octal). Proceso:
111 = 7
110 = 6
Agrupe de izquierda a derecha: 67
  • 11001111 (binario) = 317 (octal). Proceso:
111 = 7
001 = 1
11 entonces agregue un cero, con lo que se obtiene 011 = 3
Agrupe de izquierda a derecha: 317
  • 1000011 (binario) = 103 (octal). Proceso:
011 = 3
000 = 0
1 entonces agregue 001 = 1
Agrupe de izquierda a derecha: 103

[editar] Octal a binario

Cada dígito octal se convierte en su binario equivalente de 3 bits y se juntan en el mismo orden.

Ejemplo
  • 247 (octal) = 010100111 (binario). El 2 en binario es 10, pero en binario de 3 bits es Oc(2) = B(010); el Oc(4) = B(100) y el Oc(7) = (111), luego el número en binario será 010100111.

[editar] Conversión entre binario y hexadecimal

[editar] Binario a hexadecimal

Para realizar la conversión de binario a hexadecimal, realice lo siguiente:

1) Agrupe la cantidad binaria en grupos de 4 en 4 iniciando por el lado derecho. Si al terminar de agrupar no completa 4 dígitos, entonces agregue ceros a la izquierda.

2) Posteriormente vea el valor que corresponde de acuerdo a la tabla:

Número en binario0000000100100011010001010110011110001001101010111100110111101111
Número en hexadecimal0123456789ABCDEF

3) La cantidad correspondiente en hexadecimal se agrupa de derecha a izquierda.

Ejemplos
  • 110111010 (binario) = 1BA (hexadecimal). Proceso:
1010 = A
1011 = B
1 entonces agregue 0001 = 1
Agrupe de derecha a izquierda: 1BA
  • 11011110101 (binario) = 6F5 (hexadecimal). Proceso:
0101 = 5
1111 = F
110 entonces agregue 0110 = 6
Agrupe de derecha a izquierda: 6F5

[editar] Hexadecimal a binario

Note que para pasar de Hexadecimal a binario, sólo que se remplaza por el equivalente de 4 bits, de forma similar a como se hace de octal a binario.

[editar] Tabla de conversión entre decimal, binario, hexadecimal, octal, BCD, Exceso 3 y Código Gray o Reflejado

DecimalBinarioHexadecimalOctalBCDExceso 3Gray o Reflejado
0000000000000110000
1000111000101000001
2001022001001010011
3001133001101100010
4010044010001110110
5010155010110000111
6011066011010010101
7011177011110100100
81000810100010111100
91001911100111001101
101010A120001 0000 1111
111011B130001 0001 1110
121100C140001 0010 1010
131101D150001 0011 1011
141110E160001 0100 1001
151111F170001 0101 1000

[editar] Véase también

[editar] Enlaces externos

MATEMÁTICAS2: ¿TODO TIENDE EN VOLVER A LA NORMALIDAD?. ¿LE PREOCUPA EL ORDEN, QUÉ ESTÉ TODO ORDENADO? ¿LE PREOCUPA LA POLÍTICA? En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.

Distribución normal

De Wikipedia, la enciclopedia libre

Distribución normal

 

Función de densidad de probabilidad
Probability density function for the normal distribution
La línea verde corresponde a la distribución normal estandar
Función de distribución de probabilidad
Cumulative distribution function for the normal distribution
Parámetrosmu inmathbb{R} ,!
σ > 0
Dominiox inmathbb{R} ,!
Función de densidad (pdf)frac1{sigmasqrt{2pi}}; e^{ - frac{1}{2} left(frac{x-mu}{sigma}right)^2}  ,!
Función de distribución (cdf)intlimits_{-infty}^{x} frac1{sigmasqrt{2pi}}; e^{ - frac{1}{2} left(frac{t-mu}{sigma}right)^2}    , dt ,!
Mediamu ,!
Medianamu ,!
Modamu ,!
Varianzasigma^2 ,!
Coeficiente de simetría0
Curtosis0
Entropíalnleft(sigmasqrt{2,pi,e}right)  ,!
Función generadora de momentos (mgf)M_X(t)= e^{mu,t+frac{sigma^2 t^2}{2}} ,!
Función característicachi_X(t)=e^{mu,i,t-frac{sigma^2 t^2}{2}} ,!

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro. Esta curva se conoce como campana de Gauss.

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística es un modelo matemático que sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

La distribución normal también aparece en muchas áreas de la propia estadística. Por ejemplo, la distribución muestral de las medias muestrales es aproximadamente normal, cuando la distribución de la población de la cual se extrae la muestra no es normal.[1] Además, la distribución normal maximiza la entropía entre todas las distribuciones con media y varianza conocidas, lo cual la convierte en la elección natural de la distribución subyacente a una lista de datos resumidos en términos de media muestral y varianza. La distribución normal es la más extendida en estadística y muchos tests estadísticos están basados en una supuesta "normalidad".

En probabilidad, la distribución normal aparece como el límite de varias distribuciones de probabilidad continuas y discretas.

Contenido

[ocultar]

[editar] Historia

Abraham de Moivre, descubridor de la distribución normal

La distribución normal fue presentada por vez primera por Abraham de Moivre en un artículo del año 1733,[2] que fue reimpreso en la segunda edición de su The Doctrine of Chances, de 1738, en el contexto de cierta aproximación de la distribución binomial para grandes valores de n. Su resultado fue ampliado por Laplace en su libro Teoría analítica de las probabilidades (1812), y en la actualidad se llama Teorema de De Moivre-Laplace.

Laplace usó la distribución normal en el análisis de errores de experimentos. El importante método de mínimos cuadrados fue introducido por Legendre en 1805. Gauss, que afirmaba haber usado el método desde 1794, lo justificó rigurosamente en 1809 asumiendo una distribución normal de los errores. El nombre de Gauss se ha asociado a esta distribución porque la usó con profusión cuando analizaba datos astronómicos[3] y algunos autores le atribuyen un descubrimiento independiente del de De Moivre.[4] Esta atribución del nombre de la distribución a una persona distinta de su primer descubridor es un claro ejemplo de la Ley de Stigler.

El nombre de "campana" viene de Esprit Jouffret que usó el término "bell surface" (superficie campana) por primera vez en 1872 para una distribución normal bivariante de componentes independientes. El nombre de "distribución normal" fue otorgado independientemente por Charles S. Peirce, Francis Galton y Wilhelm Lexis hacia 1875.[cita requerida] A pesar de esta terminología, otras distribuciones de probabilidad podrían ser más apropiadas en determinados contextos; véase la discusión sobre ocurrencia, más abajo.

[editar] Definición formal

Hay varios modos de definir formalmente una distribución de probabilidad. La forma más visual es mediante su función de densidad. De forma equivalente, también pueden darse para su definición la función de distribución, los momentos, la función característica y la función generatriz de momentos, entre otros.

[editar] Función de densidad

Gráfica de la distribución normal de media 0 y desviación típica 1

Se dice que una variable aleatoria continua X sigue una distribución normal de parámetros μ y σ y se denota X~N(μ, σ) si su función de densidad está dada por:

f(x)=frac1{sigmasqrt{2pi}}; e^{ - frac{1}{2} left(frac{x-mu}{sigma}right)^2} , , quad xinmathbb{R},

donde μ (mu) es la media y σ (sigma) es la desviación típica (σ2 es la varianza).[5]

Se llama distribución normal "estándar" a aquélla en la que sus parámetros toman los valores μ = 0 y σ = 1. En este caso la función de densidad tiene la siguiente expresión:

f(x)=f_{0,1}(x)=frac{e^frac{-x^2}{2}}{sqrt{2pi,}}, ,quad xinmathbb{R},

Su gráfica se muestra a la derecha y con frecuencia se usan tablas para el cálculo de los valores de su distribución.

[editar] Función de distribución

Función de distribución para la distribución normal

La función de distribución de la distribución normal está definida como sigue:

 begin{align} Phi_{mu,sigma^2}(x) &{}=int_{-infty}^xvarphi_{mu,sigma^2}(u),du &{}=frac{1}{sigmasqrt{2pi}} int_{-infty}^x e^{-frac{(u - mu)^2}{2sigma^2}}, du ,quad xinmathbb{R} end{align}

Por tanto, la función de distribución de la normal estándar es:

 Phi(x) = Phi_{0,1}(x) = frac{1}{sqrt{2pi}} int_{-infty}^x e^{-frac{u^2}{2}} , du, quad xinmathbb{R}.

Esta función de distribución puede expresarse en términos de una función especial llamada función error de la siguiente forma:

 Phi(x) =frac{1}{2} Bigl[ 1 + operatorname{erf} Bigl( frac{x}{sqrt{2}} Bigr) Bigr], quad xinmathbb{R},

y la propia función de distribución puede, por consiguiente, expresarse así:

 Phi_{mu,sigma^2}(x) =frac{1}{2} Bigl[ 1 + operatorname{erf} Bigl( frac{x-mu}{sigmasqrt{2}} Bigr) Bigr], quad xinmathbb{R}.

El complemento de la función de distribución de la normal estándar, 1 − Φ(x), se denota con frecuencia Q(x), y es referida, a veces, como simplemente función Q, especialmente en textos de ingeniería.[6] [7] Esto representa la cola de probabilidad de la distribución gaussiana. También se usan ocasionalmente otras definiciones de la función Q, las cuales son todas ellas transformaciones simples de Φ.[8]

La inversa de la función de distribución de la normal estándar (función cuantil) puede expresarse en términos de la inversa de la función de error:

 Phi^{-1}(p) = sqrt2 ;operatorname{erf}^{-1} (2p - 1), quad pin(0,1),

y la inversa de la función de distribución puede, por consiguiente, expresarse como:

 Phi_{mu,sigma^2}^{-1}(p) = mu + sigmaPhi^{-1}(p) = mu + sigmasqrt2 ; operatorname{erf}^{-1}(2p - 1), quad pin(0,1).

Esta función cuantil se llama a veces la función probit. No hay una primitiva elemental para la función probit. Esto no quiere decir meramente que no se conoce, sino que se ha probado la inexistencia de tal función. Existen varios métodos exactos para aproximar la función cuantil mediante la distribución normal (véase función cuantil).

Los valores Φ(x) pueden aproximarse con mucha precisión por distintos métodos, tales como integración numérica, series de Taylor, series asintóticas y fracciones continuas.

[editar] Límite inferior y superior estrictos para la función de distribución

Para grandes valores de x la función de distribución de la normal estándar scriptstylePhi(x) es muy próxima a 1 y scriptstylePhi(-x),{=},1,{-},Phi(x) está muy cerca de 0. Los límites elementales

 frac{x}{1+x^2}varphi(x)<1-Phi(x)<frac{varphi(x)}{x}, qquad x>0,

en terminos de la densidad scriptstylevarphi son útiles.

Usando el cambio de variable v = u²/2, el límite superior se obtiene como sigue:

 begin{align} 1-Phi(x) &=int_x^inftyvarphi(u),du &<int_x^inftyfrac uxvarphi(u),du =int_{x^2/2}^inftyfrac{e^{-v}}{xsqrt{2pi}},dv =-biggl.frac{e^{-v}}{xsqrt{2pi}}biggr|_{x^2/2}^infty =frac{varphi(x)}{x}. end{align}

De forma similar, usando scriptstylevarphi'(u),{=},-u,varphi(u) y la regla del cociente,

 begin{align} Bigl(1+frac1{x^2}Bigr)(1-Phi(x))&=Bigl(1+frac1{x^2}Bigr)int_x^inftyvarphi(u),du &=int_x^infty Bigl(1+frac1{x^2}Bigr)varphi(u),du &>int_x^infty Bigl(1+frac1{u^2}Bigr)varphi(u),du =-biggl.frac{varphi(u)}ubiggr|_x^infty =frac{varphi(x)}x. end{align}

Resolviendo para scriptstyle 1,{-},Phi(x), proporciona el límite inferior.

[editar] Funciones generadoras

[editar] Función generadora de momentos

La función generadora de momentos se define como la esperanza de e(tX). Para una distribución normal, la función generadora de momentos es:

 M_X(t) = mathrm{E} left[ e^{tX} right] = int_{-infty}^{infty}  frac{1}{sigma sqrt{2pi} } e^{-frac{(x - mu)^2}{2 sigma^2}} e^{tx} , dx = e^{mu t + frac{sigma^2 t^2}{2}}

como puede comprobarse completando el cuadrado en el exponente.

 

[editar] Función característica

La función característica se define como la esperanza de eitX, donde i es la unidad imaginaria. De este modo, la función característica se obtiene reemplazando t por it en la función generadora de momentos.

Para una distribución normal, la función característica es[9]

  begin{align} chi_X(t;mu,sigma) &{} = M_X(i t) = mathrm{E} left[ e^{i t X} right]  &{}= int_{-infty}^{infty} frac{1}{sigma sqrt{2pi}} e^{- frac{(x - mu)^2}{2sigma^2}} e^{i t x} , dx  &{}= e^{i mu t - frac{sigma^2 t^2}{2}} end{align}

[editar] Propiedades

Algunas propiedades de la distribución normal son:

  1. Es simétrica respecto de su media, μ;
    Distribución de probabilidad alrededor de la media en una distribución N(μ, σ).
  2. La moda y la mediana son ambas iguales a la media, μ;
  3. Los puntos de inflexión de la curva se dan para x = μ − σ y x = μ + σ.
  4. Distribución de probabilidad en un entorno de la media:
    1. en el intervalo [μ - σ, μ + σ] se encuentra comprendida, aproximadamente, el 68,26% de la distribución;
    2. en el intervalo [μ - 2σ, μ + 2σ] se encuentra, aproximadamente, el 95,44% de la distribución;
    3. por su parte, en el intervalo [μ -3σ, μ + 3σ] se encuentra comprendida, aproximadamente, el 99,74% de la distribución. Estas propiedades son de gran utilidad para el establecimiento de intervalos de confianza. Por otra parte, el hecho de que prácticamente la totalidad de la distribución se encuentre a tres desviaciones típicas de la media justifica los límites de las tablas empleadas habitualmente en la normal estándar.
  5. Si X ~ N(μ, σ2) y a y b son números reales, entonces (aX + b) ~ N(+b, a2σ2).
  6. Si X ~ N(μx, σx2) e Y ~ N(μy, σy2) son variables aleatorias normales independientes, entonces:
    • Su suma está normalmente distribuida con U = X + Y ~ N(μx + μy, σx2 + σy2) (demostración). Recíprocamente, si dos variables aleatorias independientes tienen una suma normalmente distribuida, deben ser normales (Teorema de Crámer).
    • Su diferencia está normalmente distribuida con V = X - Y sim N(mu_X - mu_Y, sigma^2_X + sigma^2_Y).
    • Si las varianzas de X e Y son iguales, entonces U y V son independientes entre sí.
    • La divergencia de Kullback-Leibler, D {rm KL}( X | Y ) = { 1 over 2 } left( log left( { sigma^2_Y over sigma^2_X } right) + frac{sigma^2_X}{sigma^2_Y} + frac{left(mu_Y - mu_Xright)^2}{sigma^2_Y} - 1right).
  7. Si X sim N(0, sigma^2_X) e Y sim N(0, sigma^2_Y) son variables aleatorias independientes normalmente distribuidas, entonces:
  8. Si X_1, dots, X_n son variables normales estándar independientes, entonces X_1^2 + cdots + X_n^2 sigue una distribución χ² con n grados de libertad.
  9. Si X_1,dots,X_n son variables normales estándar independientes, entonces la media muestral bar{X}=(X_1+cdots+X_n)/n y la varianza muestral S^2=((X_1-bar{X})^2+cdots+(X_n-bar{X})^2)/(n-1) son independientes. Esta propiedad caracteriza a las distribuciones normales y contribuye a explicar por qué el test-F no es robusto respecto a la no-normalidad).

[editar] Estandarización de variables aleatorias normales

Como consecuencia de la Propiedad 1; es posible relacionar todas las variables aleatorias normales con la distribución normal estándar.

Si X ~ N(μ,σ2), entonces

Z = frac{X - mu}{sigma} !

es una variable aleatoria normal estándar: Z ~ N(0,1).

La transformación de una distribución X ~ N(μ, σ) en una N(0, 1) se llama normalización, estandarización o tipificación de la variable X.

Una consecuencia importante de esto es que la función de distribución de una distribución normal es, por consiguiente,

Pr(X le x) = Phi left( frac{x-mu}{sigma} right) = frac{1}{2} left( 1 + operatorname{erf} left(   frac{x-mu}{sigmasqrt{2}} right) right) .

A la inversa, si Z es una distribución normal estándar, Z ~ N(0,1), entonces

X = σZ + μ

es una variable aleatoria normal tipificada de media μ y varianza σ2.

La distribución normal estándar está tabulada (habitualmente en la forma de el valor de la función de distribución Φ) y las otras distribuciones normales pueden obtenerse como transformaciones simples, como se describe más arriba, de la distribución estándar. De este modo se pueden usar los valores tabulados de la función de distribución normal estándar para encontrar valores de la función de distribución de cualquier otra distribución normal.

[editar] Momentos

Los primeros momentos de la distribución normal son:

NúmeroMomentoMomento centralCumulante
011 
1μ0μ
2μ2 + σ2σ2σ2
3μ3 + 3μσ200
4μ4 + 6μ2σ2 + 3σ440
5μ5 + 10μ3σ2 + 15μσ400
6μ6 + 15μ4σ2 + 45μ2σ4 + 15σ615σ60
7μ7 + 21μ5σ2 + 105μ3σ4 + 105μσ600
8μ8 + 28μ6σ2 + 210μ4σ4 + 420μ2σ6 + 105σ8105σ80

Todos los cumulantes de la distribución normal, más allá del segundo, son cero.


Los momentos centrales de orden superior (2k con μ = 0) vienen dados por la fórmula

 Eleft[X^{2k}right]=frac{(2k)!}{2^k k!} sigma^{2k}.

[editar] El Teorema del Límite Central

Artículo principal: Teorema del límite central
Gráfica de la función de distribución de una normal con μ = 12 y σ = 3, aproximando la función de distribución de una binomial con n = 48 y p = 1/4

El Teorema del límite central establece que bajo ciertas condiciones (como pueden ser independientes e idénticamente distribuidas con varianza finita), la suma de un gran número de variables aleatorias se distribuye aproximadamente como una normal.

La importancia práctica del Teorema del límite central es que la función de distribución de la normal puede usarse como aproximación de algunas otras funciones de distribución. Por ejemplo:

  • Una distribución binomial de parámetros n y p es aproximadamente normal para grandes valores de n, y p no demasiado cercano a 1 ó 0 (algunos libros recomiendan usar esta aproximación sólo si np y n(1 − p) son ambos, al menos, 5; en este caso se debería aplicar una corrección de continuidad).
    La normal aproximada tiene parámetros μ = np, σ2 = np(1 − p).
  • Una distribución de Poisson con parámetro λ es aproximadamente normal para grandes valores de λ.
    La distribución normal aproximada tiene parámetros μ = σ2 = λ.

La exactitud de estas aproximaciones depende del propósito para el que se necesiten y de la tasa de convergencia a la distribución normal. Se da el caso típico de que tales aproximaciones son menos precisas en las colas de la distribución. El Teorema de Berry-Esséen proporciona un límite superior general del error de aproximación de la función de distribución.

[editar] Divisibilidad infinita

Las normales tienen una distribución de probabilidad infinitamente divisible: dada una media μ, una varianza σ 2 ≥ 0, y un número natural n, la suma X1 + . . . + Xn de n variables aleatorias independientes

X_1+X_2+dots+X_n sim N(mu/n, sigma!/sqrt n),

tiene esta específica distribución normal (para verificarlo, úsese la función característica de convolución y la inducción matemática).

[editar] Estabilidad

Las distribuciones normales son estrictamente estables.

[editar] Desviación típica e intervalos de confianza

Alrededor del 68% de los valores de una distribución normal están a una distancia σ > 1 (desviación típica) de la media, μ; alrededor del 95% de los valores están a dos desviaciones típicas de la media y alrededor del 99,7% están a tres desviaciones típicas de la media. Esto se conoce como la "regla 68-95-99,7" o la "regla empírica".

Para ser más precisos, el área bajo la curva campana entre μ − nσ y μ + nσ en términos de la función de distribución normal viene dada por

begin{align}&Phi_{mu,sigma^2}(mu+nsigma)-Phi_{mu,sigma^2}(mu-nsigma) &=Phi(n)-Phi(-n)=2Phi(n)-1=mathrm{erf}bigl(n/sqrt{2},bigr),end{align}

donde erf es la función error. Con 12 decimales, los valores para los puntos 1-, 2-, hasta 6-σ son:

 n, mathrm{erf}bigl(n/sqrt{2},bigr),
1 0,682689492137 
20,954499736104
30,997300203937
40,999936657516
50,999999426697
60,999999998027

La siguiente tabla proporciona la relación inversa de múltiples σ correspondientes a unos pocos valores usados con frecuencia para el área bajo la campana de Gauss. Estos valores son útiles para determinar intervalos de confianza para los niveles especificados basados en una curva normalmente distribuida (o estimadores asintóticamente normales):

 mathrm{erf}bigl(n/sqrt{2},bigr) n, 
0,80 1,28155 
0,901,64485
0,951,95996
0,982,32635
0,992,57583
0,9952,80703
0,9983,09023
0,9993,29052
0,99993,8906
0,999994,4172

donde el valor a la izquierda de la tabla es la proporción de valores que caerán en el intervalo dado y n es un múltiplo de la desviación típica que determina la anchura de el intervalo.

[editar] Forma familia exponencial

La distribución normal tiene forma de familia exponencial biparamétrica con dos parámetros naturales, μ y 1/σ2, y estadísticos naturales X y X2. La forma canónica tiene como parámetros {mu over sigma^2} y {1 over sigma^2} y estadísticos suficientes sum  x y -{1 over 2} sum  x^2.

[editar] Distribución normal compleja

Considérese la variable aleatoria compleja gaussiana

 Z=X+iY,

donde X e Y son variables gaussianas reales e independientes con igual varianza sigma_r^2. La función de distribución de la variable conjunta es entonces

 frac{1}{2,pi,sigma_r^2} e^{-(x^2+y^2)/(2 sigma_r ^2)}.

Como sigma_Z =sqrt{2}sigma_r, la función de distribución resultante para la variable gaussiana compleja Z es

 frac{1}{pi,sigma_Z^2} e^{-|Z|^2!/sigma_Z^2}.

[editar] Distribuciones relacionadas

  • Y˜Cauchy(μ = 0,θ = 1) es una distribución de Cauchy si Y = X1 / X2 para X1˜N(0,1) y X2˜N(0,1) son dos distribuciones normales independientes.
  • Distribución normal truncada. si X sim N(mu, sigma^2),! entonces truncando X por debajo de A y por encima de B dará lugar a una variable aleatoria de media E(X)=mu + frac{sigma(varphi_1-varphi_2)}{T},! donde T=Phileft(frac{B-mu}{sigma}right)-Phileft(frac{A-mu}{sigma}right), ; varphi_1 = varphileft(frac{A-mu}{sigma}right), ; varphi_2 = varphileft(frac{B-mu}{sigma}right) y varphi es la función de densidad de una variable normal estándar.

[editar] Estadística descriptiva e inferencial

[editar] Resultados

De la distribución normal se derivan muchos resultados, incluyendo rangos de percentiles ("percentiles" o "cuantiles"), curvas normales equivalentes, stanines, z-scores, y T-scores. Además, un número de procedimientos de estadísticos de comportamiento están basados en la asunción de que esos resultados están normalmente distribuidos. Por ejemplo, el test de Student y el análisis de varianza (ANOVA) (véase más abajo). La gradación de la curva campana asigna grados relativos basados en una distribución normal de resultados.

[editar] Tests de normalidad

Artículo principal: Test de normalidad

Los tests de normalidad se aplican a conjuntos de datos para determinar su similitud con una distribución normal. La hipótesis nula es, en estos casos, si el conjunto de datos es similar a una distribución normal, por lo que un P-valor suficientemente pequeño indica datos no normales.

[editar] Estimación de parámetros

[editar] Estimación de parámetros de máxima verosimilitud

Supóngase que

X_1,dots,X_n

son independientes y cada una está normalmente distribuida con media μ y varianza σ 2 > 0. En términos estadísticos los valores observados de estas n variables aleatorias constituyen una "muestra de tamaño n de una población normalmente distribuida. Se desea estimar la media poblacional μ y la desviación típica poblacional σ, basándose en las valores observados de esta muestra. La función de densidad conjunta de estas n variables aleatorias independientes es

begin{align}f(x_1,dots,x_n;mu,sigma) &= prod_{i=1}^n varphi_{mu,sigma^2}(x_i) &=frac1{(sigmasqrt{2pi})^n}prod_{i=1}^n expbiggl(-{1 over 2} Bigl({x_i-mu over sigma}Bigr)^2biggr), quad(x_1,ldots,x_n)inmathbb{R}^n. end{align}

Como función de μ y σ, la función de verosimilitud basada en las observaciones X1, ..., Xn es

 L(mu,sigma) = frac C{sigma^n} expleft(-{sum_{i=1}^n (X_i-mu)^2 over 2sigma^2}right), quadmuinmathbb{R}, sigma>0,

con alguna constante C > 0 (de la cual, en general, se permitiría incluso que dependiera de X1, ..., Xn, aunque desapareciera con las derivadas parciales de la función de log-verosimilitud respecto a los parámetros tenidos en cuenta, véase más abajo).

En el método de máxima verosimilitud, los valores de μ y σ que maximizan la función de verosimilitud se toman como estimadores de los parámetros poblacionales μ y σ.

Habitualmente en la maximización de una función de dos variables, se podrían considerar derivadas parciales. Pero aquí se explota el hecho de que el valor de μ que maximiza la función de verosimilitud con σ fijo no depende de σ. No obstante, encontramos que ese valor de μ, entonces se sustituye por μ en la función de verosimilitud y finalmente encontramos el valor de σ que maximiza la expresión resultante.

Es evidente que la función de verosimilitud es una función decreciente de la suma

sum_{i=1}^n (X_i-mu)^2. ,!

Así que se desea el valor de μ que minimiza esta suma. Sea

overline{X}_n=(X_1+cdots+X_n)/n

la media muestral basada en las n observaciones. Nótese que

 begin{align} sum_{i=1}^n (X_i-mu)^2 &=sum_{i=1}^nbigl((X_i-overline{X}_n)+(overline{X}_n-mu)bigr)^2 &=sum_{i=1}^n(X_i-overline{X}_n)^2 + 2(overline{X}_n-mu)underbrace{sum_{i=1}^n (X_i-overline{X}_n)}_{=,0} + sum_{i=1}^n (overline{X}_n-mu)^2 &=sum_{i=1}^n(X_i-overline{X}_n)^2 + n(overline{X}_n-mu)^2. end{align}

Sólo el último término depende de μ y se minimiza por

widehat{mu}_n=overline{X}_n.

Esta es la estimación de máxima verosimilitud de μ basada en las n observaciones X1, ..., Xn. Cuando sustituimos esta estimación por μ en la función de verosimilitud, obtenemos

L(overline{X}_n,sigma) = frac C{sigma^n} expbiggl(-{sum_{i=1}^n (X_i-overline{X}_n)^2 over 2sigma^2}biggr), quadsigma>0.

Se conviene en denotar la "log-función de verosimilitud", esto es, el logaritmo de la función de verosimilitud, con una minúscula , y tenemos

ell(overline{X}_n,sigma)=log C-nlogsigma-{sum_{i=1}^n(X_i-overline{X}_n)^2 over 2sigma^2}, quadsigma>0,

entonces

 begin{align} {partial over partialsigma}ell(overline{X}_n,sigma) &=-{n over sigma} +{sum_{i=1}^n (X_i-overline{X}_n)^2 over sigma^3} &=-{n over sigma^3}biggl(sigma^2-{1 over n}sum_{i=1}^n (X_i-overline{X}_n)^2 biggr), quadsigma>0. end{align}

Esta derivada es positiva, cero o negativa según σ2 esté entre 0 y

hatsigma_n^2:={1 over n}sum_{i=1}^n(X_i-overline{X}_n)^2,

o sea igual a esa cantidad, o mayor que esa cantidad. (Si hay solamente una observación, lo que significa que n = 1, o si X1 = ... = Xn, lo cual sólo ocurre con probabilidad cero, entonces hatsigma{}_n^2=0 por esta fórmula, refleja el hecho de que en estos casos la función de verosimilitud es ilimitada cuando σ decrece hasta cero.)

Consecuentemente esta media de cuadrados de residuos es el estimador de máxima verosimilitud de σ2, y su raíz cuadrada es el estimador de máxima verosimilitud de σ basado en las n observaciones. Este estimador hatsigma{}_n^2 es sesgado, pero tiene un menor error medio al cuadrado que el habitual estimador insesgado, que es n/(n − 1) veces este estimador.

[editar] Sorprendente generalización

La derivada del estimador de máxima verosimilitud de la matriz de covarianza de una distribución normal multivariante es despreciable. Involucra el teorema espectral y la razón por la que puede ser mejor para ver un escalar como la traza de una matriz 1×1 matrix que como un mero escalar. Véase estimación de la covarianza de matrices.

[editar] Estimación insesgada de parámetros

El estimador  overline{X} de máxima verosimilitud de la media poblacional μ, es un estimador insesgado de la media poblacional.

El estimador de máxima verosimilitud de la varianza es insesgado si asumimos que la media de la población es conocida a priori, pero en la práctica esto no ocurre. Cuando disponemos de una muestra y no sabemos nada de la media o la varianza de la población de la que se ha extraído, como se asumía en la derivada de máxima verosimilitud de arriba, entonces el estimador de máxima verosimilitud de la varianza es sesgado. Un estimador insesgado de la varianza σ2 es la cuasi varianza muestral:

 S^2 = frac{1}{n-1} sum_{i=1}^n (X_i - overline{X})^2.

que sigue una distribución Gamma cuando las Xi son normales independientes e idénticamente distribuidas:

 S^2 sim operatorname{Gamma}left(frac{n-1}{2},frac{2 sigma^2}{n-1}right),

con media operatorname{E}(S^2)=sigma^2 y varianza operatorname{Var}(S^2)=2sigma^4/(n-1).

La estimación de máxima verosimilitud de la desviación típica es la raíz cuadrada de la estimación de máxima verosimilitud de la varianza. No obstante, ni ésta, ni la raíz cuadrada de la cuasivarianza muestral proporcionan un estimador insesgado para la desviación típica (véase estimación insesgada de la desviación típica para una fórmula particular para la distribución normal.

[editar] Incidencia

Las distribuciones aproximadamente normales aparecen por doquier, como queda explicado por el teorema central del límite. Cuando en un fenómeno se sospecha la presencia de un gran número de pequeñas causas actuando de forma aditiva e independiente es razonable pensar que las observaciones serán "normales". Hay métodos estadísticos para probar empíricamente esta asunción, por ejemplo, el test de Kolmogorov-Smirnov.

Hay causas que pueden actuar de forma multiplicativa (más que aditiva). En este caso, la asunción de normalidad no está justificada y es el logaritmo de la variable en cuestión el que estaría normalmente distribuido. La distribución de las variables directamente observadas en este caso se denomina log-normal.

Finalmente, si hay una simple influencia externa que tiene un gran efecto en la variable en consideración, la asunción de normalidad no está tampoco justificada. Esto es cierto incluso si, cuando la variable externa se mantiene constante, las distribuciones marginales resultantes son, en efecto, normales. La distribución completa será una superposición de variables normales, que no es en general normal. Ello está relacionado con la teoría de errores (véase más abajo).

A continuación se muestran una lista de situaciones que estarían, aproximadamente, normalmente distribuidas. Más abajo puede encontrarse una discusión detallada de cada una de ellas:

  • En problemas de recuento, donde el teorema central del límite incluye una aproximación de discreta a continua y donde las distribuciones infinitamente divisibles y descomponibles están involucradas, tales como:
  • En medidas fisiológicas de especímenes biológicos:
    • El logaritmo de las medidas del tamaño de tejidos vivos (longitud, altura, superficie de piel, peso);
    • La longitud de apéndices inertes (pelo, garras, rabos, dientes) de especímenes biológicos en la dirección del crecimento;
    • Otras medidas fisiológicas podrían estar normalmente distribuidas, aunque no hay razón para esperarlo a priori;
  • Se asume con frecuencia que los errores de medida están normalmente distribuidos y cualquier desviación de la normalidad se considera una cuestión que debería explicarse;
  • Variables financieras, en el modelo Black-Scholes:
    • Cambios en el logaritmo de

Changes in the logarithm of tasas de cambio, índices de precios, índices de existencias de mercado; estas variables se comportan como el interés compuesto, no como el interés simple, por tanto, son multiplicativas;

    • Mientras que el modelo Black-Scholes presupone normalidad, en realidad estas variables exhiben colas pesadas, como puede verse en crash de las existencias de mercado;
    • Otras variables financieras podrían estar normalmente distribuidas, pero no hay razón para esperarlo a priori;
  • Intensidad de la luz:
    • La intensidad de la luz láser está normalmente distribuida;
    • La luz térmica tiene una distribución de Bose-Einstein en escalas de tiempo muy breves y una distribución normal en grandes escalas de tiempo debido al teorema central del límite.

Es relevante para la biolgía y la economía el hecho de que los sistemas complejos tienden a mostrar power laws más que normal.

[editar] Recuento de fotones

La intensidad de la luz de una sola fuente varía con el tiempo, así como las fluctuaciones térmicas que pueden observarse si la luz se analiza a una resolución suficientemente alta. La mecánica cuántica interpreta las medidas de la intensidad de la luz como un recuento de fotones, donde la asunción natural es usar la distribución de Poisson. Cuando la intensidad de la luz se integra a lo largo de grandes periodos de tiempo mayores que el tiempo de coherencia, la aproximación Poisson - Normal es apropiada.

[editar] Medida de errores

La normalidad es la asunción central de la teoría matemática de errores. De forma similar en el ajuste de modelos estadístico, un indicador de la bondad del ajuste es que el error residual (así es como se llaman los errores en esta circunstancia) sea independiente y normalmente distribuido. La asunción es que cualquier desviación de la normalidad necesita ser explicada. En ese sentido, en ambos, ajuste de modelos y teoría de errores, la normalidad es la única observación que no necesita ser explicada, sino que es esperada. No obstante, si los datos originales no están normalmente distribuidos (por ejemplo, si siguen una distribución de Cauchy, entonces los residuos tampoco estarán normalmente distribuidos. Este hecho es ignorado habitualmente en la práctica.

Las medidas repetidas de la misma cantidad se espera que cedan el paso a resultados que están agrupados entorno a un valor particular. Si todas las fuentes principales de errores se han tomado en cuenta, se asume que el error que queda debe ser el resultado de un gran número de muy pequeños y aditivos efectos y, por consiguiente, normal. Las desviaciones de la normalidad se interpretan como indicaciones de errores sistemáticos que no han sido tomados en cuenta. Puede debatirse si esta asunción es válida.

Una famosa observación atribuida a Gabriel Lippmann dice:[cita requerida]

Todo el mundo cree en la ley normal de los errores: los matemáticos, porque piensan que es un hecho experimental; y los experimentadores, porque suponen que es un teorema matemático

Otra fuente podría ser Henri Poincaré.

[editar] Características físicas de especímenes biológicos

Los tamaños de los animales adultos siguen aproximadamente una distribución lognormal. La evidencia y explicación basada en modelos de crecimiento fue publicada por primera vez en el libro Problemas de crecimiento relativo, de 1932, por Julian Huxley.

Las diferencias de tamaño debido a dimorfismos sexuales u otros polimorfismos de insectos, como la división social de las abejas en obreras, zánganos y reinas, por ejemplo, hace que la distribución de tamaños se desvíe hacia la lognormalidad.

La asunción de que el tamaño lineal de los especímenes biológicos es normal (más que lognormal) nos lleva a una distribución no normal del peso (puesto que el peso o el volumen es proporcional al cuadrado o el cubo de la longitud y las distribuciones gaussianas sólo mantienen las transformaciones lineales). A la inversa, asumir que el peso sigue una distribución normal implica longitudes no normales. Esto es un problema porque, a priori, no hay razón por la que cualquiera de ellas (longitud, masa corporal u otras) debería estar normalmente distribuida. Las distribuciones lognormales, por otro lado, se mantienen entre potencias, así que el "problema" se desvanece si se asume la lognormalidad.

Por otra parte, hay algunas medidas biológicas donde se asume normalidad, tales como la presión sanguínea en humanos adultos. Esta asunción sólo es posible tras separar a hombres y mujeres en distintas poblaciones, cada una de las cuales está normalmente distribuida.

[editar] Variables financieras

El modelo normal de movimiento de activos no incluye movimientos extremos tales como quiebras financieras.

Ya en 1900 Louis Bachelier propuso representar los precios de cambio usando la distribución normal. Esta aproximación se ha modificado desde entonces ligeramente. A causa de la naturaleza multiplicativa del interés compuesto, los indicadores financieros como valores de mercado y precios de las materias primas exhiben un "comportamiento multiplicativo". Como tales, sus cambios periódicos (por ejemplo, cambios anuales) no son normales, sino lognormales. Esta es todavía la hipótesis más comúnmente aceptada en economía.

No obstante, en realidad las variables financieras exhiben colas pesadas y así, la asunción de normalidad infravalora la probabilidad de eventos extremos como quiebras financieras. Se han sugerido correcciones a este modelo por parte de matemáticos como Benoît Mandelbrot, quien observó que los cambios en el logaritmo durante breves periodos de tiempo (como un día) se aproximan bien por distribuciones que no tienen una varianza finita y, por consiguiente, el teorema central del límite no puede aplicarse. Más aún, la suma de muchos de tales cambios sigue una distribución de log-Levy.

[editar] Distribuciones en tests de inteligencia

A veces, la dificultad y número de preguntas en un test de inteligencia se selecciona de modo que proporcionen resultados normalmente distribuidos. Más aún, las puntuaciones "en crudo" se convierten a valores que marcan el cociente intelectual ajustándolas a la distribución normal. En cualquier caso se trata de un resultado causado deliberadamente por la construcción del test o de una interpretación de las puntuaciones que sugiere normalidad para la mayoría de la población. Sin embargo, la cuestión acerca de si la inteligencia en sí está normalmente distribuida es más complicada porque se trata de una variable latente y, por consiguiente, no puede observarse directamente.

[editar] Ecuación de difusión

La función de densidad de la distribución normal está estrechamente relacionada con la ecuación de difusión (homogénea e isótropa) y, por tanto, también con la ecuación de calor. Esta ecuación diferencial parcial describe el tiempo de evolución de una función de densidad bajo difusión. En particular, la función de densidad de masa

varphi_{0,t}(x) = frac{1}{sqrt{2pi t,}}expleft(-frac{x^2}{2t}right),

para la distribución normal con esperanza 0 y varianza t satisface la ecuación de difusión:

 frac{partial}{partial t} varphi_{0,t}(x) = frac{1}{2} frac{partial^2}{partial x^2} varphi_{0,t}(x).

Si la densidad de masa para un tiempo t = 0 viene dada por la delta de Dirac, lo cual significa, esencialemente que toda la masa está inicialmente concentrada en un punto, entonces la función de densidad de masa en el tiempo t tendrá la forma de la función de densidad de la normal, con varianza creciendo linealmente con t. Esta conexión no es coincidencia: la difusión se debe a un movimiento Browniano que queda descrito matemáticamente por un proceso de Wiener, y tal proceso en un tiempo t también resultará normal con varianza creciendo linealmente con t'.

Más generalmente, si la densidad de masa inicial viene dada por una función φ(x), entonces la densidad de masa en un tiempo t vendrá dada por la convolución de φ y una función de densidad normal.

[editar] Uso en estadística computacional

[editar] Generación de valores para una variable aleatoria normal

Para simulaciones por ordenador es útil, en ocasiones, generar valores que podrían seguir una distribución normal. Hay varios métodos y el más básico de ellos es invertir la función de distribución de la normal estándar. Se conocen otros métodos más eficientes, uno de los cuales es la transformacion de Box-Muller. Un algoritmo incluso más rápido es el algoritmo zigurat. Ambos se discuten más abajo. Una aproximación simple a estos métodos es programarlos como sigue: simplemente súmense 12 desviaciones uniformes (0,1) y réstense 6 (la mitad de 12). Esto es bastante útil en muchas aplicaciones. La suma de esos 12 valores sigue la distribución de Irwin-Hall; son elegidos 12 para dar a la suma una varianza de uno, exactamente. Las desviaciones aleatorias resultantes están limitadas al rango (−6, 6) y tienen una densidad que es una doceava sección de una aproximación polinomial de undécimo orden a la distribución normal .[10]

El método de Box-Muller dice que, si tienes dos números aleatorios U y V uniformemente distribuidos en (0, 1], (por ejemplo, la salida de un generador de números aleatorios), entonces X e Y son dos variables aleatorias estándar normalmente distribuidas, donde:

Y = sqrt{- 2 ln U} , sin(2 pi V) .

Esta formulación aparece porque la distribución χ² con dos grados de libertad (véase la propiedad 4, más arriba) es una variable aleatoria exponencial fácilmente generada (la cual corresponde a la cantidad lnU en estas ecuaciones). Así, un ángulo elegido uniformemente alrededor de un círculo vía la variable aleatoria V y un radio elegido para ser exponencial se transforman entonces en coordenadas x e y normalmente distribuidas.

Un método mucho más rápido que la transformación de Box-Muller, pero que sigue siendo exacto es el llamado algoritmo Zigurat, desarrollado por George Marsaglia. En alrededor del 97% de los casos usa sólo dos números aleatorios, un entero aleatorio y un uniforme aleatorio, una multiplicación y un test-si . Sólo un 3% de los casos donde la combinación de estos dos cae fuera del "corazón del zigurat", un tipo de rechazo muestral usando logaritmos, exponenciales y números aleatorios más uniformes deberían ser empleados.

Hay también alguna investigación sobre la conexión entre la rápida transformación de Hadamard y la distribución normal, en virtud de que la transformación emplea sólo adición y sustracción y por el teorema central del límite los números aleatorios de casi cualquier distribución serán transformados en la distribución normal. En esta visión se pueden combinar una serie de transformaciones de Hadamard con permutaciones aleatorias para devolver conjuntos de datos aleatorios normalmente distribuidos.

[editar] Aproximaciones numéricas de la distribución normal y su función de distribución

La función de distribución normal se usa extensamente en computación científica y estadística. Por consiguiente, ha sido implementada de varias formas.

La Biblioteca Científica GNU calcula valores de la función de distribución normal estándar usando aproximaciones por funciones racionales a trozos. Otro método de aproximación usa polinomios de tercer grado en intervalos.[11] El artículo sobre el lenguaje de programación bc proporciona un ejemplo de cómo computar la función de distribución en GNU bc.

Para una discusión más detallada sobre cómo calcular la distribución normal, véase la sección 3.4.1C. de The Art of Computer Programming (El arte de la programación por ordenador), de Knuth.

[editar] Uso de tablas

La probabilidad de que una variable aleatoria (que sigue una distribución normal) se encuentre entre dos valores determinados será en general difícil de calcular (hay que usar la integral de la función de probabilidad). Para ello, existen tablas con los valores correspondientes, si bien éstos se calculan para la distribución Normal Tipificada.

Básicamente, se busca un valor de x (por ejemplo, x=0,37 ,!), y la tabla nos da la probabilidad de que Zle x ,!: P(Z_{(0,1)} le 0,37)= 0,644 308 699 ,!

En el caso de que la distribución no sea estándar, por ejemplo, N(mu ,sigma^2) ,! con mu =2 ,! y sigma^2 =9 ,!, tendremos que tipificar la variable: P(X_{(2,3)} le 2,6)= Pleft (frac{X_{(2,3)} -mu }{sigma}le frac{2,6-mu}{sigma} right)=P left(Z_{(0,1)} le frac{2,6-2}{3}right)=P left(Z_{(0,1)} le 0,2 right) ,! Se obtiene una variable Z normal, que además está tipificada. Si ahora se consulta en la tabla, P(X_{(2,3)} le 2,6) = P(Z_{(0,1)} le 0,2) = 0,579 259 687  ,!

[editar] Véase también

[editar] Referencias

  1. Es una consecuencia del Teorema Central del Límite
  2. Abraham de Moivre, "Approximatio ad Summam Terminorum Binomii (a + b)n in Seriem expansi" (impreso el 12 de noviembre de 1733 en Londres para una edición privada). Este panfleto se reimprimió en: (1) Richard C. Archibald (1926) “A rare pamphlet of Moivre and some of his discoveries,” Isis, vol. 8, páginas 671-683; (2) Helen M. Walker, “De Moivre on the law of normal probability” en David Eugene Smith, A Source Book in Mathematics [Nueva York, Nueva York: McGraw-Hill, 1929; reimpresión: Nueva York, Nueva York: Dover, 1959], vol. 2, páginas 566-575.; (3) Abraham De Moivre, The Doctrine of Chances (2ª ed.) [Londres: H. Woodfall, 1738; reimpresión: Londres: Cass, 1967], páginas 235-243; (3ª ed.) [Londres: A Millar, 1756; reimpresión: Nueva York, Nueva York: Chelsea, 1967], páginas 243-254; (4) Florence N. David, Games, Gods and Gambling: A History of Probability and Statistical Ideas [Londres: Griffin, 1962], Apéndice 5, páginas 254-267.
  3. Havil, 2003
  4. Wussing, Hans. «Lección 10». Lecciones de Historia de las Matemáticas (1ª (castellano) edición). Siglo XXI de España Editores, S.A.. pp. 190. ISBN 84-323-0966-4. http://books.google.es/books?id=IG3_b5Xm8PMC. «"La distribución normal y sus aplicaciones a la teoría de errores se asocia a menudo con el nombre de Gauss, quien la descubrió -igual que Laplace- independientemente; no obstante ya había sido estudiada por de Moivre» 
  5. Weisstein, Eric W. «Normal Distribution» (en inglés). MathWorld. Wolfram Research. Consultado el 18 de marzo de 2009.
  6. La función Q
  7. http://www.eng.tau.ac.il/~jo/academic/Q.pdf
  8. Weisstein, Eric W. «Normal Distribution Function» (en inglés). MathWorld. Wolfram Research.
  9. M.A. Sanders. «Characteristic function of the univariate normal distribution». Consultado el 06-03-2009.
  10. Johnson NL, Kotz S, Balakrishnan N. (1995) Continuous Univariate Distributions Volume 2, Wiley. Equation(26.48)
  11. Andy Salter. «B-Spline curves». Consultado el 05-12-2008.

[editar] Enlaces externos

Se puede usar software y un programa de computadora para el ajuste de una distribución de probabilidad, incluyendo la normal, a una serie de datos: