Blogia
petalofucsia

Matemáticas3

MATEMÁTICAS3: RAZÓN (MATEMÁTICAS). En matemáticas, una razón es una relación entre dos números semejantes (es decir, objetos, personas, estudiantes, cucharadas, unidades idénticas de cualquier dimensión), generalmente se expresa como "a es a b" o a:b, a veces se expresa aritméticamente como un cociente adimensional de los dos, que indica de manera explícita las veces que el primer número contiene el segundo.

Razón (matemáticas)

De Wikipedia, la enciclopedia libre
Para otros usos de este término, véase Razón (desambiguación).
«ratio» redirige aquí. Para los coeficientes usados en economía y finanzas, véase ratio financiero.
TENEMOS RAZONADO CÓMO SOMOS CON EL NÚMERO PI.

En matemáticas, una razón es una relación entre dos números semejantes (es decir, objetos, personas, estudiantes, cucharadas, unidades idénticas de cualquier dimensión), generalmente se expresa como "a es a b" o a:b, a veces se expresa aritméticamente como un cociente adimensional de los dos, que indica de manera explícita las veces que el primer número contiene el segundo.

Contenido

[ocultar]

[editar] Razón geométrica

La razón entre el ancho y la altura de un típico monitor de computadora.

La razón geométrica es la comparación de dos cantidades por su cociente, en donde se ve cuántas veces contiene una a la otra. Es necesario tener el dominio o rango para poder sacarla.

Ejemplo: 18 entre 6 es igual a 3 (18 tiene tres veces seis); su razón geométrica es 3.

La razón se puede escribir de 3 formas Ejemplo A. 50 sobre 70 B. 50 es a 70 C. 50: 70 El numerador de la razón se llama antecedente debido a que puede haberse dividido o multiplicado.

[editar] Razón aritmética

La razón aritmética de dos cantidades es la diferencia (o resta) de dichas cantidades. La razón aritmética se puede escribir colocando entre las dos cantidades el signo . o bien con el signo -. Así, la razón aritmética de 6 a 4 se escribe: 6.4 ó 6-4.

color{red}{antecedenterightarrow 6}color{black}{-}color{blue}{4leftarrow consecuente}

El primer término de una razón aritmética recibe el nombre de antecedente y el segundo el de consecuente. Así en la razón 6-4, el antecedente es 6 y el consecuente 4.

[editar] Propiedades de las razones Aritméticas

Como la razón aritmética de dos cantidades no es más que la resta indicada de dichas cantidades, las propiedades de las razones aritméticas serán las propiedades de toda suma o resta.

PRIMERA PROPIEDAD

Si al antecedente se le suma o resta una cantidad la razón aritmética queda aumentada o disminuida dicha cantidad.

  • Primer caso (con la suma)
Sea la razón aritmética 7 a 5 es igual a 2:

 7-5=2,  o , 7.5=2

Si le sumamos al antecedente el número 4 (aclaramos que puede ser cualquier número) entonces tendríamos (7+4)-5= 6. Como se observa la respuesta de la razón aritmética original (7-5=2), después de sumarle 4 al antecedente ((7+4)-5= 6) la respuesta queda aumentada en dicha cantidad.
  • Segundo caso (con la resta)
Sea la razón aritmética 18 a 3 es igual a 15:

 18-3=15,  o , 18.3=15

Si le restamos al antecedente el número 2 (aclaramos que puede ser cualquier número) entonces tendríamos (18-2)-3= 13. Como se observa la respuesta de la razón aritmética original (18-3=15), después de restarle 2 al antecedente ((18-2)-3= 13) la respuesta queda disminuida en dicha cantidad.

SEGUNDA PROPIEDAD

Si al consecuente de una razón aritmética se suma o se resta una cantidad cualquiera, la razón queda disminuida en el primer caso y aumentada en el segundo en la cantidad de veces que indica dicho número.

  • Primer caso (sumando una cantidad cualquiera al consecuente)
Sea la razón aritmética 45 a 13 es igual a 32:Si le sumamos al consecuente el número 7 (aclaramos que puede ser cualquier número) entonces tendríamos 45-(13+7)=25. Como se observa la respuesta de la razón aritmética original (45-13=32), después de sumarle 7 al consecuente 45-(13+7)=25) la respuesta queda disminuida en dicha cantidad es decir de 32 paso a ser 25.
  • Segundo caso (restando una cantidad cualquiera al consecuente)
Sea la razón aritmética 36 a 12 es igual a 24:Si le restamos al consecuente el número 3 (aclaramos que puede ser cualquier número) entonces tendríamos 36-(12-3)= 27. Como se observa la respuesta de la razón aritmética original (36-12=24), después de restarle 3 al consecuente (36-(12-3)= 27) la respuesta queda aumentada en dicha cantidad es decir de 24 paso a ser 27.

[editar] Proporciones Aritméticas

Una "proporción aritmética" es la = de 2 razones. Las proporciones aritméticas se pueden representar de dos maneras distintas:

  • a/b = c/d o bien
  • a:b = c:d

y se lee "a es a b como c es a d".

Los términos primero y cuarto de una proporción aritmética reciben el nombre de extremos, mientras que los términos segundo y tercero se denominan medios. Los términos primero y tercero reciben el nombre de antecedentes, mientras que los términos segundo y cuarto se llaman consecuentes.

Así sea la proporción aritmética 10:5 = 8:4. Los términos 10 y 4 (son extremos) y, 5 y 8 (son medios).

Las proporciones aritméticas cuyos medios no son iguales reciben el nombre de proporciones aritméticas discretas. Por el contrario, si los medios de la proporción aritmética son iguales, ésta recibe el nombre de continua. En el caso del ejemplo se trata de una proporción aritmética discreta porque sus medios son desiguales (5 y 8).

En toda proporción (no continua):

  • El producto de los extremos será igual al producto de los medios.

(10×4 = 5×8)

Se define la media aritmética de una proporción aritmética continua como cada uno de los medios iguales de dicha proporción aritmética. Sea: 10-8::8-6. La media aritmética es 8.

La media aritmética de una proporción aritmética es igual a la semisuma de los extremos.

La razón geométrica de dos números es el cociente exacto de dividir el primero a por el segundo b y se representa:

a:b

Se lee "a" es a "b" como "c" es a "d"

Donde el a, b son entero, fraccionario o mixto (desde el punto de la aritmética).

Las razones se pueden escribir de tres maneras diferentes:

Ejemplo:

2 es a 202:1 /12/1

Por lo tanto toda razón se puede expresar como una fracción y eventualmente como un decimal.

[editar] Véase también

MATEMÁTICAS3: SINGULARIDADES. Dentro de la amplia variedad de funciones matemáticas existentes se encuentran algunas que presentan comportamientos extraños e inesperados cuando se le asignan determinados valores a la/s variable/s independiente/s. Dicho comportamiento se describe con el nombre de singularidad de la función.

Singularidad matemática

De Wikipedia, la enciclopedia libre
Para otros usos de este término, véase Singularidad (desambiguación).

Dentro de la amplia variedad de funciones matemáticas existentes se encuentran algunas que presentan comportamientos extraños e inesperados cuando se le asignan determinados valores a la/s variable/s independiente/s. Dicho comportamiento se describe con el nombre de singularidad de la función.

Contenido

[ocultar]

[editar] Concepto intuitivo de continuidad

Intuitivamente se asocia la idea de continuidad de una función al hecho de no levantar el lápiz cuando se representa gráficamente la función. Las discontinuidades generalmente se clasifican en varios tipos, siendo las llamadas de salto uno de los tipos más frecuentes. Dentro de dicho tipo existen las discontinuidades de salto puntuales, en las que la función se desvía un único punto del camino más razonable; las discontinuidades de salto finito, en las cuales la función salta un valor y prosigue de forma continua a partir de ahí; y por último las discontinuidades de salto infinito, en las que la función alcanza un valor infinito. Estas últimas son las que reciben el nombre de singularidades.

Criterio de análisis de continuidad en funciones de una variable:

Una función f , es continua en x=c , si y sólo si:

  1. f(c) , está definido.
  2. Existe el límite de f(x) , cuando x , tiende a c ,.
  3. El límite de f(x) , cuando x , tiende a c , coincide con f(c) ,.

[editar] Funciones singulares

Existe una gran variedad de funciones elementales que contienen singularidades en sus dominios. Una de las más comunes suele ser la hipérbola elemental y(x)=frac{1}{x} ,. Esta función posee una singularidad en el punto x=0 ,, en dicho punto la función presenta un comportamiento que tiende al infinito. Dicha función pone de manifiesto la carácterística de que toda función racional cuyo denominador se anule presentará una singularidad en el punto en el que eso suceda. así pues la función y(x)=(2x-8)/(4x-12) , presentará una singularidad en el punto x=3 ,. Otras funciones que contienen singularidades son y(x)=log x , ó y(x)=tan x ,.

[editar] Análisis de las singularidades

Normalmente las singularidades no pueden estudiarse empleando técnicas aritméticas elementales, ya que suelen implicar operaciones que son imposibles de realizar (por ejemplo, dividir por cero). En lugar de eso, el método preferido para analizar el comportamiento de las funciones en sus singularidades es el paso al límite. Estudiando el límite de una función en su punto singular se puede obtener información valiosa de su comportamiento en ese punto. Como ejemplo comentar que nadie puede calcular que y(x) = 1 / x toma en el punto x = 0 el valor infinito, sin embargo, estudiando el valor que toma su límite en ese punto y analizando la tendencia de la función en las cercanías es posible asegurarlo.

[editar] Singularidades en variable compleja

Sea  z_0 in mathbb{C}, y una función  f:mathbb{C} longrightarrow mathbb{C} se dice que f(z) es singular en z0 si no es analítica en z0.

Además, si z0 es una singularidad de f(z), decimos que es una singularidad no aislada si forall r>0,    exists  z_1 in triangle_0 (z_0,r)/ f(z) es singular en z1. Es decir, a una distancia arbitraria, sigo encontrando otra singularidad. z0 es una singularidad aislada, si z0 es una singularidad y no es no aislada. Dentro de las singularidades aisladas, las podemos clasificar en:

  • Evitables: Puede definirse un valor tal que f(z) sea analitica en z0.
  • Polares: f(z) tiende a  infty al acercarse a z0.
  • Esenciales: El límite no es independiente del camino, y aún más, la función toma valores por todo el plano complejo (excepto uno) en un entorno a z0 y lo hace infinitas veces.

Es posible estudiar el tipo de singularidad no aislada, mediante el desarrollo de Laurent en la corona centrada en z0. Si la serie principal (la de potencias negativas) tiene finitos términos, se trata de una singularidad polar, caso contrario, es esencial. Lógicamente se desprende, que si el desarrollo de Laurent se reduce a una serie de Taylor, la singularidad es evitable.

[editar] Interpretación física de las singularidades

El estudio de las singularidades desde el punto de vista matemático se limita especificamente a resolver el problema de la función que no está definida en el punto de estudio. Sin embargo, desde el punto de vista físico el estudio de las singularidades es a menudo más apasionante.

Teorías tales como el electromagnetismo clásico de Maxwell contienen singularidades en sus ecuaciones básicas. En la teoría de Maxwell una de las singularidades más conocidas es la que predice un campo eléctrico infinito en el lugar donde se encuentra colocada una carga puntual.

Una de las singularidades más famosas de la física es la que se encuentra en la solución de Schwarzschild de las ecuaciones de campo de la relatividad general, singularidad en el continuo espacio-tiempo que predice la existencia de agujeros negros.

Actualmente uno de los campos de discusión abiertos más apasionante de la física es aquel que pretende estudiar si hubo o no singularidad en el principio del universo y si la habrá en el final del mismo.

MATEMÁTICAS3: SUPREMOS. En matemáticas, dado un subconjunto S de un conjunto parcialmente ordenado (P,

Supremo

De Wikipedia, la enciclopedia libre
Un conjunto A de números reales (representados por círculos azules), un conjunto de cotas superiores de A (círculos rojos), y el mínimo de las cotas superiores, el supremo de A(diamante rojo).

En matemáticas, dado un subconjunto S de un conjunto parcialmente ordenado (P, <), el supremo de S, si existe, es el mínimo elemento de P que es mayor o igual a cada elemento de S. En otras palabras, es la mínima de las cotas superiores de S. El supremo de un conjunto S comumente se denota sup(S).

[editar] Propiedades

  • Si el supremo existe, entonces es único
  • sup(A cup B)= max{sup(A),sup(B)}, si es que dichos supremos existen
  • Un conjunto tiene máximo, si y solo si contiene a su supremo

[editar] Ejemplos

  • En el campo de los números reales, todo subconjunto no vacio, acotado superiormente tiene supremo.
  • sup { 1, 2, 3 } = 3,
  • sup { x in mathbb{R} | 0 < x < 1 }  =  sup { x in mathbb{R} | 0 leq x  leq 1 } = 1,
  • sup { x in mathbb{Q} | x^2 < 2 } = sqrt{2},
  • sup { (-1)^n - frac{1}{n} | n in mathbb{N} } = 1,

[editar] Referencias

MATEMÁTICAS3: DATOS Y ALGORITMOS. En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latin, dixit algorithmus y éste a su vez del matemático persa Al Juarismi[1] ) es un conjunto preescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad.[2] Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia.

Algoritmo

De Wikipedia, la enciclopedia libre
Los diagramas de flujo sirven para representar algoritmos de manera gráfica.

En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latin, dixit algorithmus y éste a su vez del matemático persa Al Juarismi[1] ) es un conjunto preescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad.[2] Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia.[1]

En la vida cotidiana, se emplean algoritmos frecuentemente para resolver problemas. Algunos ejemplos son los manuales de usuario, que muestran algoritmos para usar un aparato, o las instrucciones que recibe un trabajador por parte de su patrón. Algunos ejemplos en matemática son el algoritmo de la división para calcular el cociente de dos números, el algoritmo de Euclides para obtener el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un sistema lineal de ecuaciones.

PROBLEMA -> ALGORITMO -> PROGRAMA

El pseudocódigo es una herramienta algorítmica que permite escribir pseudoprogramas (una imitación de un programa real) utilizando un lenguaje de pseudoprogramación que es una imitación de los lenguajes de programación de alto nivel. Así, un pseudocódigo es una combinación de símbolos (+, -, *, /, %, >, >=, <, <=, !=, ==, y, o, no), términos (Leer, Imprimir, Abrir, Cerrar, Hacer...Mientras, Mientras...Hacer, Para...Mientras, etc) y otras características comúnmente utilizadas en uno o más lenguajes de alto nivel.

No existen reglas que determinen que es o no es un pseudocódigo, sino que varía de un programador a otro. El objetivo del pseudocódigo es permitir al programador centrarse en los aspectos lógicos de la solución evitando las reglas de sintáxis de un lenguaje de programación. Posteriormente el pseudocódigo debe ser traducido a programa usando un lenguaje de programación de alto nivel como Java, C++, C, etc.

Ejemplo 2.1:- Diseñe un algoritmo para preparar una limonada.

INICIO Llenar una jarra con un litro de agua Echar el jugo de tres limones Echar cuatro cucharadas de azúcar Remover el agua hasta disolver completamente el azúcar FIN

Ejemplo 2.2 :- Diseñe un algoritmo que permita hallar la suma y el promedio de tres números.

INICIO LEER numero1, numero2, numero3 suma = numero1 + numero2 + numero3 promedio = suma / 3 IMPRIMIR suma, promedio FIN

Notas:-

  • El témino LEER significa obtener un dato de algún dispositivo de entrada, como el teclado, y almacenarlo en una variable.

Una variable es una localización en la memoria que tiene un nombre y cuyo contenido puede cambiar a lo largo de la ejecución de un programa. Así numero1, numero2 y numero3 son variables.

  • El término IMPRIMIR significa mostrar el valor de una variable en algún dispositivo de salida, como la pantalla.

 

Contenido

[ocultar]

[editar] Características principales y definición formal

En general, no existe ningún consenso definitivo en cuanto a la definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten los datos de un problema (entrada) en una solución (salida).[1] [2] [3] [4] [5] [6] Sin embargo cabe notar que algunos algoritmos no necesariamente tienen que terminar o resolver un problema en particular. Por ejemplo, una versión modificada de la criba de Eratóstenes que nunca termine de calcular números primos no deja de ser un algoritmo.[7]

A lo largo de la historia varios autores han tratado de definir formalmente a los algoritmos utilizando modelos matemáticos como máquinas de Turing entre otros.[8] [9] Sin embargo, estos modelos están sujetos a un tipo particular de datos como son números, símbolos o gráficas mientras que, en general, los algoritmos funcionan sobre una vasta cantidad de estructuras de datos.[3] [1] En general, la parte común en todas las definiciones se puede resumir en las siguientes tres propiedades siempre y cuando no consideremos algoritmos paralelos:[7]

Tiempo secuencial. Un algoritmo funciona en tiempo discretizado –paso a paso–, definiendo así una secuencia de estados "computacionales" por cada entrada válida (la entrada son los datos que se le suministran al algoritmo antes de comenzar).Estado abstracto. Cada estado computacional puede ser descrito formalmente utilizando una estructura de primer orden y cada algoritmo es independiente de su implementación (los algoritmos son objetos abstractos) de manera que en un algoritmo las estructuras de primer orden son invariantes bajo isomorfismo.Exploración acotada. La transición de un estado al siguiente queda completamente determinada por una descripción fija y finita; es decir, entre cada estado y el siguiente solamente se puede tomar en cuenta una cantidad fija y limitada de términos del estado actual.

En resumen, un algoritmo es cualquier cosa que funcione paso a paso, donde cada paso se pueda describir sin ambigüedad y sin hacer referencia a una computadora en particular, y además tiene un límite fijo en cuanto a la cantidad de datos que se pueden leer/escribir en un solo paso. Esta amplia definición abarca tanto a algoritmos prácticos como aquellos que solo funcionan en teoría, por ejemplo el método de Newton y la eliminación de Gauss-Jordan funcionan, al menos en principio, con números de precisión infinita; sin embargo no es posible programar la precisión infinita en una computadora, y no por ello dejan de ser algoritmos.[10] En particular es posible considerar una cuarta propiedad que puede ser usada para validar la tesis de Church-Turing de que toda función calculable se puede programar en una máquina de Turing (o equivalentemente, en un lenguaje de programación suficientemente general):[10]

Aritmetizabilidad. Solamente operaciones innegablemente calculables están disponibles en el paso inicial.

[editar] Medios de expresión de un algoritmo

Los algoritmos pueden ser expresados de muchas maneras, incluyendo al lenguaje natural, pseudocódigo, diagramas de flujo y lenguajes de programación entre otros. Las descripciones en lenguaje natural tienden a ser ambiguas y extensas. El usar pseudocódigo y diagramas de flujo evita muchas ambigüedades del lenguaje natural. Dichas expresiones son formas más estructuradas para representar algoritmos; no obstante, se mantienen independientes de un lenguaje de programación específico.

La descripción de un algoritmo usualmente se hace en tres niveles:

  1. Descripción de alto nivel. Se establece el problema, se selecciona un modelo matemático y se explica el algoritmo de manera verbal, posiblemente con ilustraciones y omitiendo detalles.
  2. Descripción formal. Se usa pseudocódigo para describir la secuencia de pasos que encuentran la solución.
  3. Implementación. Se muestra el algoritmo expresado en un lenguaje de programación específico o algún objeto capaz de llevar a cabo instrucciones.

También es posible incluir un teorema que demuestre que el algoritmo es correcto, un análisis de complejidad o ambos.

[editar] Diagrama de flujo

Diagrama de flujo que expresa un algoritmo para calcular la raíz cuadrada de un número x
Artículo principal: Diagrama de flujo

Los diagramas de flujo son descripciones gráficas de algoritmos; usan símbolos conectados con flechas para indicar la secuencia de instrucciones y están regidos por ISO.

Los diagramas de flujo son usados para representar algoritmos pequeños, ya que abarcan mucho espacio y su construcción es laboriosa. Por su facilidad de lectura son usados como introducción a los algoritmos, descripción de un lenguaje y descripción de procesos a personas ajenas a la computación.

[editar] Pseudocódigo

Artículo principal: Pseudocódigo

El pseudocódigo (falso lenguaje, el prefijo pseudo significa falso) es una descripción de alto nivel de un algoritmo que emplea una mezcla de lenguaje natural con algunas convenciones sintácticas propias de lenguajes de programación, como asignaciones, ciclos y condicionales, aunque no está regido por ningún estándar. Es utilizado para describir algoritmos en libros y publicaciones científicas, y como producto intermedio durante el desarrollo de un algoritmo, como los |diagramas de flujo, aunque presentan una ventaja importante sobre estos, y es que los algoritmos descritos en pseudocódigo requieren menos espacio para representar instrucciones complejas.

El pseudocódigo está pensado para facilitar a las personas el entendimiento de un algoritmo, y por lo tanto puede omitir detalles irrelevantes que son necesarios en una implementación. Programadores diferentes suelen utilizar convenciones distintas, que pueden estar basadas en la sintaxis de lenguajes de programación concretos. Sin embargo, el pseudocódigo en general es comprensible sin necesidad de conocer o utilizar un entorno de programación específico, y es a la vez suficientemente estructurado para que su implementación se pueda hacer directamente a partir de él.

[editar] Sistemas formales

La teoría de autómatas y la teoría de funciones recursivas proveen modelos matemáticos que formalizan el concepto de algoritmo. Los modelos más comunes son la máquina de Turing, máquina de registro y funciones μ-recursivas. Estos modelos son tan precisos como un lenguaje máquina, careciendo de expresiones coloquiales o ambigüedad, sin embargo se mantienen independientes de cualquier computadora y de cualquier implementación.

[editar] Implementación

Muchos algoritmos son ideados para implementarse en un programa. Sin embargo, los algoritmos pueden ser implementados en otros medios, como una red neuronal, un circuito eléctrico o un aparato mecánico y eléctrico. Algunos algoritmos inclusive se diseñan especialmente para implementarse usando lápiz y papel. El algoritmo de multiplicación tradicional, el algoritmo de Euclides, la criba de Eratóstenes y muchas formas de resolver la raíz cuadrada son sólo algunos ejemplos.

[editar] Variable

Un elemento que toda pertenece a un dato específico correcto. La declaración se realiza comenzando con var. Principalmente, existen dos maneras de otorgar valores iniciales a variables:

  1. Mediante una sentencia de asignación.
  2. Mediante uno de los procedimientos de entrada de datos (read o readln).


Ejemplo:

     ...
i:=1;
readln(n);
while i < n do begin
(* cuerpo del bucle *)
i := i + 1
end;
...

[editar] Estructuras secuenciales

La estructura secuencial es aquella en la que una acción sigue a otra en secuencia. Las operaciones se suceden de tal modo que la salida de una es la entrada de la siguiente y así sucesivamente hasta el fin del proceso. La asignación de esto consiste, en el paso de valores o resultados a una zona de la memoria. Dicha zona será reconocida con el nombre de la variable que recibe el valor. La asignación se puede clasificar de la siguiente forma:

  1. Simples: Consiste en pasar un valor constante a una variable (a <= 15)
  2. Contador: Consiste en usarla como un verificador del numero de veces que se realiza un proceso (a <= a + 1)
  3. Acumulador: Consiste en usarla como un sumador en un proceso (a <= a + b)
  4. De trabajo: Donde puede recibir el resultado de una operación matemática que involucre muchas variables (a <= c + b*2/4).

Un ejemplo de estructura secuencial, como obtener la área de un triángulo:

Inicio

...
int b, h, a;
printf("Diga la base", b);
scanf(%i, b);
printf("Diga la altura", h);
scanf(%i, h)
a := (b*h)/2
printf("El área del triángulo es de", a)
...

Fin

[editar] Algoritmos como funciones

Artículo principal: Teoría de la computabilidad
Esquemática de un algoritmo solucionando un problema de ciclo hamiltoniano.

Un algoritmo se puede concebir como una función que transforma los datos de un problema (entrada) en los datos de una solución (salida). Más aún, los datos se pueden representar a su vez como secuencias de bits, y en general, de símbolos cualesquiera.[1] [9] [11] Como cada secuencia de bits representa a un número natural (véase Sistema binario), entonces los algoritmos son en esencia funciones de los números naturales en los números naturales que sí se pueden calcular. Es decir que todo algoritmo calcula una función f:mathbf Nto mathbf N donde cada número natural es la codificación de un problema o de una solución.

En ocasiones los algoritmos son susceptibles de nunca terminar, por ejemplo, cuando entran a un bucle infinito. Cuando esto ocurre, el algoritmo nunca devuelve ningún valor de salida, y podemos decir que la función queda indefinida para ese valor de entrada. Por esta razón se considera que los algoritmos son funciones parciales, es decir, no necesariamente definidas en todo su dominio de definición.

Cuando una función puede ser calculada por medios algorítmicos, sin importar la cantidad de memoria que ocupe o el tiempo que se tarde, se dice que dicha función es computable. No todas las funciones entre secuencias datos son computables. El problema de la parada es un ejemplo.

[editar] Análisis de algoritmos

Artículo principal: Análisis de algoritmos

Como medida de la eficiencia de un algoritmo, se suelen estudiar los recursos (memoria y tiempo) que consume el algoritmo. El análisis de algoritmos se ha desarrollado para obtener valores que de alguna forma indiquen (o especifiquen) la evolución del gasto de tiempo y memoria en función del tamaño de los valores de entrada.

El análisis y estudio de los algoritmos es una disciplina de las ciencias de la computación y, en la mayoría de los casos, su estudio es completamente abstracto sin usar ningún tipo de lenguaje de programación ni cualquier otra implementación; por eso, en ese sentido, comparte las características de las disciplinas matemáticas. Así, el análisis de los algoritmos se centra en los principios básicos del algoritmo, no en los de la implementación particular. Una forma de plasmar (o algunas veces "codificar") un algoritmo es escribirlo en pseudocódigo o utilizar un lenguaje muy simple tal como Lexico, cuyos códigos pueden estar en el idioma del programador.

Algunos escritores restringen la definición de algoritmo a procedimientos que deben acabar en algún momento, mientras que otros consideran procedimientos que podrían ejecutarse eternamente sin pararse, suponiendo el caso en el que existiera algún dispositivo físico que fuera capaz de funcionar eternamente. En este último caso, la finalización con éxito del algoritmo no se podría definir como la terminación de éste con una salida satisfactoria, sino que el éxito estaría definido en función de las secuencias de salidas dadas durante un periodo de vida de la ejecución del algoritmo. Por ejemplo, un algoritmo que verifica que hay más ceros que unos en una secuencia binaria infinita debe ejecutarse siempre para que pueda devolver un valor útil. Si se implementa correctamente, el valor devuelto por el algoritmo será válido, hasta que evalúe el siguiente dígito binario. De esta forma, mientras evalúa la siguiente secuencia podrán leerse dos tipos de señales: una señal positiva (en el caso de que el número de ceros sea mayor que el de unos) y una negativa en caso contrario. Finalmente, la salida de este algoritmo se define como la devolución de valores exclusivamente positivos si hay más ceros que unos en la secuencia y, en cualquier otro caso, devolverá una mezcla de señales positivas y negativas.

[editar] Ejemplo de algoritmo

El problema consiste en encontrar el máximo de un conjunto de números. Para un ejemplo más complejo véase Algoritmo de Euclides.

[editar] Descripción de alto nivel

Dado un conjunto finito C de números, se tiene el problema de encontrar el número más grande. Sin pérdida de generalidad se puede asumir que dicho conjunto no es vacío y que sus elementos están numerados como c_0,c_1,dots,c_n.

Es decir, dado un conjunto C={c_0,c_1,dots,c_n} se pide encontrar m tal que xleq m para todo elemento x que pertenece al conjunto C.

Para encontrar el elemento máximo, se asume que el primer elemento (c0) es el máximo; luego, se recorre el conjunto y se compara cada valor con el valor del máximo número encontrado hasta ese momento. En el caso que un elemento sea mayor que el máximo, se asigna su valor al máximo. Cuando se termina de recorrer la lista, el máximo número que se ha encontrado es el máximo de todo el conjunto.

[editar] Descripción formal

El algoritmo puede ser escrito de una manera más formal en el siguiente pseudocódigo:

Algoritmo Encontrar el máximo de un conjunto

función max(C)

//C es un conjunto no vacío de números//n| C | // | C | es el número de elementos de C//mc0para i1 hasta n hacer si ci > m entonces mcidevolver m

Sobre la notación:

  • "←" representa una asignación: mx significa que la variable m toma el valor de x;
  • "devolver" termina el algoritmo y devuelve el valor a su derecha (en este caso, el máximo de C).

[editar] Implementación

En lenguaje C++:

int max(int c[], int n){
int i, m = c[0];
for (i = 1; i < n; i++)
if (c[i] > m) m = c[i];
return m;
}

[editar] Referencias

  1. a b c d e Brassard, Gilles; Bratley, Paul (1997). Fundamentos de Algoritmia. Madrid: PRENTICE HALL. ISBN 84-89660-00-X. 
  2. a b Real Academia Española. Diccionario de la lengua española "Conjunto ordenado y finito de operaciones que permite hallar la solución de un problema."
  3. a b Cormen, Thomas; Leiserson, Charles; Rivest, Ronald; Stein, Clifford (2009). Introduction to algorithms. Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-53305-8. 
  4. Ralph P. Grimaldi (1998). «Propiedades de los números enteros: Inducción matemática». Matemáticas Discreta y Combinatoria. México: Addison Wesley Longman de México. ISBN 968-444-324-2. 
  5. Johnsonbaugh, Richard (2005). «Introducción a la teoría de números». Matemáticas Discretas. México: PEARSON EDUCACIÓN. ISBN 970-26-0637-3. 
  6. Carl Reynolds & Paul Tymann (2008). Schaum's Outline of Principles of Computer Science. McGraw-Hill. ISBN 978-0-07-146051-4. 
  7. a b Gurevich, Yuri (2000). «Sequential Abstract State Machines capture Sequential Algorithms». ACM Transactions on Computational Logic 1 (1). ISSN 1529-3785, 77-111. http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf. 
  8. John E. Savage (1987). The Complexity of Computing. Krieger Publishing Co.. ISBN 089874833X. 
  9. a b [|Sipser, Michael] (2005). Introduction to the Theory of Computation (2 edición). Course Technology. ISBN 978-0534950972. 
  10. a b Nachum Dershowitz & Yuri Gurevich (2008). «A natural axiomatization of computability and proof of Church's Thesis». Bulletin of Symbolic Logic 14 (3). ISSN 10798986, 299-350. http://research.microsoft.com/en-us/um/people/gurevich/Opera/188.pdf. 
  11. [|Kelley, Dean] (1995). Teoría de Autómatas y Lenguajes Formales. Prentice Hall. ISBN 0-13-497777-7. 

[editar] Bibliografía

  • Fundamentos de Algoritmia, G. Brassard y P. Bratley. (ISBN 848966000)
  • The Art of Computer Programming, Knuth, D. E. [quien fue también, el creador del TeX]
  • Introduction to Algorithms (2nd ed), Cormen, T. H., Leiserson, C. E., Rivest, R. L. y Stein, C.
  • Introduction to Algorithms. A Creative Approach, Mamber, U.
  • Algorithms in C (3r ed), Sedgewick, R. (también existen versiones en C++ y Java)
  • The Design and Analysis of Computer Algorithms, Aho, A.

[editar] Véase también

[editar] Tipos de algoritmos según su función

[editar] Técnicas de diseño de algoritmos

  • Algoritmos voraces (greedy): seleccionan los elementos más prometedores del conjunto de candidatos hasta encontrar una solución. En la mayoría de los casos la solución no es óptima.
  • Algoritmos paralelos: permiten la división de un problema en subproblemas de forma que se puedan ejecutar de forma simultánea en varios procesadores.
  • Algoritmos probabilísticos: algunos de los pasos de este tipo de algoritmos están en función de valores pseudoaleatorios.
  • Algoritmos determinísticos: el comportamiento del algoritmo es lineal: cada paso del algoritmo tiene únicamente un paso sucesor y otro antecesor.
  • Algoritmos no determinísticos: el comportamiento del algoritmo tiene forma de árbol y a cada paso del algoritmo puede bifurcarse a cualquier número de pasos inmediatamente posteriores, además todas las ramas se ejecutan simultáneamente.
  • Divide y vencerás: dividen el problema en subconjuntos disjuntos obteniendo una solución de cada uno de ellos para después unirlas, logrando así la solución al problema completo.
  • Metaheurísticas: encuentran soluciones aproximadas (no óptimas) a problemas basándose en un conocimiento anterior (a veces llamado experiencia) de los mismos.
  • Programación dinámica: intenta resolver problemas disminuyendo su coste computacional aumentando el coste espacial.
  • Ramificación y acotación: se basa en la construcción de las soluciones al problema mediante un árbol implícito que se recorre de forma controlada encontrando las mejores soluciones.
  • Vuelta atrás (backtracking): se construye el espacio de soluciones del problema en un árbol que se examina completamente, almacenando las soluciones menos costosas.

[editar] Temas relacionados

[editar] Disciplinas relacionadas

[editar] Enlaces externos

Wikilibros

MATEMÁTICAS3: POTENCIA DE UN PUNTO. En geometría elemental, la expresión potencia de un punto se refiere a un resultado que relaciona las longitudes de segmentos de rectas que pasan por dicho punto y cortan a un círculo fijo.

Potencia de un punto

De Wikipedia, la enciclopedia libre
Potencia de un punto:
PA·PB=PC·PD=PE·PF.

En geometría elemental, la expresión potencia de un punto se refiere a un resultado que relaciona las longitudes de segmentos de rectas que pasan por dicho punto y cortan a un círculo fijo.

De forma más precisa, si P es un punto en el plano y se fija un círculo con centro O, entonces para cualquier línea que pase por P y corte al círculo en dos puntos A, B, se cumplirá que PA·PB es constante, independientemente de la posición de la línea. El valor de dicha constante se denomina la potencia del punto P.

El término potencia para referirse a este concepto geométrico fue introducida por Jakob Steiner en el artículo de 1826 titulado Einige geometrische Betrachtungen («Unas cuantas observaciones geométricas»),[1] aunque el teorema al que hace referencia se encuentra ya en Los Elementos de Euclides

Contenido

[ocultar]

[editar] Configuraciones posibles

El teorema sobre potencia de un punto puede expresarse de forma alternativa como sigue:

(Potencia de un punto) Si dos rectas que pasan por un punto P, cortan a un círculo fijo en los puntos A, B y C, D respectivamente, entonces PA·PB = PC·PD.

En otras palabras, cualquier otra línea que pase por P y corte al círculo determinará dos segmentos cuyo producto es el mismo valor.

La demostración de este resultado procede por casos, dependiendo de si el punto P se encuentra en el interior, o en el exterior del círculo.

[editar] El punto es interior al círculo

Caso 1: El punto de corte es interior al círculo.

Tomando dos cuerdas arbitrarias AB y CD del círculo que se cortan en el punto P, se consideran los triángulos triangle APC y triangle DPB los cuales serán semejantes, pues :

  • El teorema del ángulo inscrito establece que  angle PAC =  angle PDB, siendo ambos iguales a la mitad del arco BC.
  • Los ángulos angle APC y angle BPD son iguales por ser opuestos por el vértice.

De dicha semejanza se deduce que

frac{PA}{PD}= frac{PC}{PD}

y por tanto

 PA cdot PB = PC cdot PD.

Este resultado se encuentra ya en la obra Los Elementos, de Euclides, donde aparece como la proposición 35 del libro III:

Si en un círculo se cortan dos rectas entre sí, el rectángulo comprendido por los segmentos de una es igual al rectángulo comprendido por los segmentos de la otra
Euclides. Los Elementos, III.35.

Debe aclararse que en la concepción matemática griega los números eran representados siempre por cantidades geométricas y por tanto no tenía sentido una multiplicación «numérica» de longitudes de segmentos. Por ello, para decir que dos productos tienen el mismo valor expresa que los rectángulos formados por dichos segmentos son iguales (esto es, sus áreas).

[editar] El punto es exterior al círculo

Caso 2: El punto de corte es exterior al círculo.

En este caso AB y CD son dos secantes que se intersecan en un punto P exterior al círculo. Al igual que en el caso anterior es posible demostrar que los triángulos triangle APC y triangle DPB son semejantes pues:

  • El cuadrilátero ABCD es cíclico y por tanto angle ACD + angle ABD = 180^circ. Por otro lado angle ABD + angle DBP = 180^circ y por tanto angle DBP = angle ACD.
  • Los ángulos angle BPD y angle CPA son el mismo ángulo y por tanto iguales entre sí.

De la semejanza se deduce nuevamente que

frac{PA}{PD}= frac{PC}{PD}

y por tanto

 PA cdot PB = PC cdot PD.

[editar] Una secante y una tangente

Caso 3: El punto de corte es exterior al círculo y una de las rectas es tangente.

Un caso de especial consideración es el formado por una recta tangente y una secante, como en la figura. En esta situación, el ángulo angle BTP es semiinscrito y mide la mitad del arco BT, al igual que el ángulo inscrito angle TAP.

La igualdad de ángulos nuevamente implica una semejanza de triángulos, en esta ocasión triangle PAT y triangle PTB. Dicha semejanza implica

frac{PA}{PT} = frac{PT}{PB}

y por tanto

PAcdot PB = PT^2.

Una recta tangente puede considerarse como un caso límite de secantes.

Este caso en realidad puede considerarse como un caso límite del correspondiente a dos secantes, obtenido cuando los puntos C, D se desplazan sobre la circunferencia hasta coincidir. En este sentido, el punto de tangencia es en realidad un punto de corte «doble» y el producto PC·PD se convierte en PT·PT=PT².

[editar] Valor de la potencia de un punto

El teorema de potencia de un punto establece que el valor del producto PA·PB es independiente de la línea, pero no da ningún indicio de ese valor. Dicho valor depende únicamente de la posición del punto en relación al círculo. En su artículo de 1876, Steiner demostró el siguiente teorema.

(Valor de la potencia de un punto) La potencia de un punto P respecto a un círculo de radio r es igual a la cantidad | d2r2 | , donde d es la distancia del punto P al centro del círculo.


Steiner, 1876.

[editar] El punto es interior al círculo

El valor de PA·PB es igual a r²-d².

Para hallar el valor de la potencia de un punto, considérese la situación donde la cuerda AB pasa por el centro O del círculo, es decir, AB es un diámetro. Etiquetando los puntos como en la figura adjunta, se observa

PAcdot PB = (r+d)(r-d) = r^2-d^2.

Por tanto, el producto para cualquier otra cuerda PC·PD es el mismo valor: r²-d².

[editar] El punto es exterior al círculo

El valor de PA·PB es igual a d²-r².

Cuando el punto es exterior al círculo, ya se ha establecido que el valor de la potencia de un punto exterior es igual al cuadrado de la longitud de una tangente al círculo desde dicho punto.

Considerando la figura formada por una tangente PT y una recta que pasa por el centro O del círculo, se encuentra que el triángulo triangle POT es rectángulo pues una recta tangente es perpendicular a la recta que une el punto de tangencia con el centro del círculo, es decir: PT perp OT .

Aplicando el teorema de Pitágoras se obtiene

PO^2 = PT^2 + OT^2,

y por tanto

PT^2 = PO^2 - OT^2,

es decir:

PT^2 = d^2 - r^2,.

Otra forma de demostrar la relación es observar que, con la disposición de la figura, cuando AB es un diámetro, la longitud del segmento PA es (d-r) mientras que la del segmento PB es (d+r) y así:

PAcdot PB = (d-r)(d+r) = d^2 - r^2,.

segmento PO es igual a d y la del segmento OA es igual a r.

[editar] Definición algebraica de la potencia de un punto

Por medio del teorema de Steiner se puede dar una definición alternativa (y equivalente) para la potencia de un punto.

(Definición algebraica de la potencia de un punto) La potencia de un punto P respecto a un círculo de radio r es el valor

pi(P) = d^2 - r^2,

donde d es la distancia de P al centro del círculo.

Obsérvese que con esta definición, los puntos exteriores al círculo tienen una potencia positiva mientras que los puntos interiores tienen una potencia negativa. Este signo en apariencia extraño refleja que en realidad la potencia de un punto es un producto de segmentos dirigidos: cuando el punto es exterior al círculo los segmentos PA, PB tienen la misma dirección y por tanto el producto es positivo, mientras que si el punto es interior, los segmentos PA y PB tendrán direcciones opuestas, por lo que su producto será negativo. Finalmente, los puntos sobre la circunferencia tienen una potencia nula, pues d²-r²=0.

Esta definición quita el énfasis en productos de segmentos de un conjunto infinito de líneas y centra la atención en el concepto de función : la potencia de un punto da origen a una función entre el conjunto de los puntos del plano y los números reales.

[editar] Sistema cartesiano de coordenadas

Gráfico de la función potencia de un punto, relativa a un círculo de radio 1 (en rojo). Obsérvese que la imagen de la parte interior al círculo es negativa y por tanto queda debajo del plano xy (en verde).

La definición algebraica permite adicionalmente el cálculo de la potencia de un punto mediante el uso de coordenadas. La potencia del punto P=(x,y) respecto al círculo centrado en el origen con radio 1 es

pi(x,y) = (sqrt{x^2 + y^2})^2 - 1^2 = x^2+y^2 -1.

mientras que la función potencia relativa a un círculo centrado en el origen, con radio arbitrario r es

pi(x,y) = (sqrt{x^2 + y^2})^2 - r^2 = x^2+y^2 -r^2.

Es posible obtener la gráfica en 3 dimensiones de estas funciones, con el plano xy como dominio y el eje z como codominio, resultando la gráfica un paraboloide.

[editar] Lugares geométricos

Lugares geométricos de potencia constante respecto a un círculo fijo (en azul) de radio 1.

El primer lugar geométrico a considerar es aquel formado por los puntos cuya potencia respecto a un círculo fijo es la misma. Dicho lugar geométrico corresponde a una circunferencia concéntrica a la dada, exterior si la potencia es positiva, interior cuando la potencia es negativa.

Esto se desprende de la relación π(P) = d2r2 pues, siendo r una constante, el valor de π(P) dependerá únicamente de la distancia del punto al centro del círculo base: puntos a la misma distancia tendrán exactamente la misma potencia.

[editar] Eje radical

Artículo principal: Eje radical
El eje radical de dos circunferencias es una recta perpendicular a la línea de los centros.

Otro lugar geométrico que se puede considerar es aquel formado por los puntos cuya potencia respecto a dos círculos fijos (no concéntricos) es la misma. Es decir, aquellos puntos P tales que d_1^2-r_1^2=d_2^2-r_2^2 donde d1,d2 son las distancias desde P a los centros del primer y segundo círculo, mientras que r1,r2 son los radios de los mismos.

Este lugar geométrico es una línea recta, denominada eje radical de los dos círculos, perpendicular a la línea que une los centros de ambos. Los detalles varían dependiendo de la posición relativa de los círculos (si se cortan, si son ajenos o si uno contiene a otro).

El caso más sencillo, aquí ilustrado, es el que ambos círculos se cortan. Denominando por A, B a los puntos de corte, se observa que para cualquier punto de la línea AB se cumple que la potencia respecto a cualquiera de los dos círculos es la misma: PA·PB.

Como consecuencia adicional se obtiene como consecuencia que dicha recta también es el lugar geométrico de los puntos desde los cuales se puede trazar tangentes de la misma longitud hacia cada uno de los círculos. Esto es porque la potencia del punto P también es igual a PF² y PG², por lo que PF=PG.

[editar] Referencias

  1. The MacTutor History of Mathematics archive (Abril, 2009). «Jakob Steiner» (en inglés). School of Mathematics and Statistics. University of St Andrews, Scotland. Consultado el 17 de noviembre de 2010.

MATEMÁTICAS3: POTENCIACIÓN. POTENCIAS MATEMÁTICAS. La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n.

Potenciación

De Wikipedia, la enciclopedia libre

La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n.

Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente:

  • Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces.
a^n = underbrace{a times cdots times a}_n,

Por ejemplo:  2^4 = 2 cdot 2 cdot 2 cdot 2 = 16 .

  • cuando el exponente es un número entero negativo, equivale a la fracción inversa de la base pero con exponente positivo.
a^{-p}= frac{1}{a^p}
  • cuando el exponente es una fracción irreducible n/m, equivale a una raíz:
 a^{frac{n}{m}} = sqrt[m]{a^n}

Cualquier número elevado a 0 equivale a 1, excepto el caso particular de 00 que, en principio, no está definido (ver cero).

La definición de potenciación puede extenderse a exponentes reales, complejos o incluso matriciales.

Contenido

[ocultar]

[editar] Propiedades de la potenciación

[editar] Potencia de exponente 0

Un número (distinto de 0) elevado al exponente 0 da como resultado la unidad (1), puesto que:

1 = frac {a^1} {a^1} = a^{1-1} = a^0,

[editar] Potencia de exponente 1

Toda potencia de exponente 1 es igual a la base:

a^1 = a ,

Ejemplo:

54^1=54 ,

[editar] Potencia de exponente negativo

Un número elevado a un exponente negativo, es igual al inverso de la misma expresión pero con exponente positivo:

a^{-n} = a^{0-n} = frac {a^0}{a^n} = frac {1}{a^n},

[editar] Multiplicación de potencias de igual base

El producto de dos o más potencias de igual base es igual a la base elevada a la suma de los correspondientes exponentes (la misma base y se suman los exponentes):

 a^m cdot a^n = a^{m + n}

Ejemplos:

 9^3 cdot 9^2 = 9^{3+2}= 9^5

[editar] División de potencias de igual base

La división de dos potencias de igual base es igual a la base elevada a la resta de los exponentes respectivos:

 frac{a^m}{a^n} = a^{m - n}

Ejemplo:

 frac{9^5}{9^3} = 9^{5-3}= 9^2

[editar] Potencia de un producto

La potencia de un producto es igual al producto de los factores elevados cada uno al exponente de dicha potencia. Es decir, una potencia de base a.b y de exponente n, es igual al factor a elevado a n, multiplicado por el factor b también elevado a n:

(a cdot b)^n=a^n cdot b^n

[editar] Potencia de una potencia

La potencia de una potencia de base a es igual a la potencia de base a y cuyo exponente es el producto de ambos exponentes (la misma base y se multiplican los exponentes):

 {(a^m)}^n = a^{m cdot n}

Debido a esto, la notación a^{b^c} se reserva para significar a^{(b^c)} ya que {(a^b)}^c se puede escribir sencillamente como abc.

[editar] Propiedad distributiva

La potenciación es distributiva con respecto a la multiplicación y a la división:

 (a cdot b)^n = a^n cdot b^n  left(frac{a}{b}right)^n = frac{a^n}{b^n}

[editar] Propiedades que no cumple la potenciación

No es distributiva con respecto a la adición y sustracción:

(a + b)^m  neq  a^m + b^m (a - b)^m  neq  a^m - b^m

No cumple la propiedad conmutativa, exceptuando aquellos casos en que base y exponente tienen el mismo valor o son equivalentes. En general:

a^b  neq  b^a

Tampoco cumple la propiedad asociativa:

a^{b^c}=a^{(b^c)}ne (a^b)^c=a^{(bcdot c)}=a^{b c}

[editar] Potencia de base 10

En las potencias con base 10, el resultado será la unidad desplazada tantas posiciones como indique el valor absoluto del exponente: hacia la izquierda si el exponente es positivo, o hacia la derecha si el exponente es negativo.

Ejemplos:

 10^{-5}=0,00001 , 10^{-4}=0,0001 , 10^{-3}=0,001 , 10^{-2}=0,01 , 10^{-1}=0,1 , 10^0=1 , 10^1=10 , 10^2=100 , 10^3=1.000 , 10^4=10.000 , 10^5=100.000 , 10^6=1.000.000 ,

[editar] Potencia de números complejos

Artículo principal: Fórmula de De Moivre

Para cualquiera de los números reales a,b,c,d , se tiene la identidad:

left(a,e^{i,b}right)^{left(c,e^{i,d}right)}=a^{c,cos d},e^{i,left( c,log a,sin d+b,c,cos dright)-b,c,sin d}

[editar] Representación gráfica

gráfico de y = x^2 ,
gráfico de y = x^3 ,

La representación gráfica de una potencia par tiene la forma de una parábola. Su vértice se sitúa en el punto (0, 0), es decreciente en el segundo cuadrante y creciente en el primero.

La representación gráfica de una potencia impar son dos ramas de parábola. Tiene un punto de inflexión en el vértice (0, 0), es siempre creciente, y ocupa el tercer y primer cuadrante.

Dichas curvas son continuas y derivables para todos los reales.

[editar] Límites

[editar] 00

El caso especial 00 se considera indefinido y dependiendo del contexto pueden ser asignados distintos valores dependiendo de las propiedades específicas que se quieran mantener.

Por ejemplo, puede argumentarse que 00 es el igual al valor del límite

lim_{xto 0^+} x^0

y como x0 = 1 para x ne 0, dicho valor podría ser igual a 1. Sin embargo también puede considerarse dicha expresión como el valor del límite

lim_{xto 0^+} 0^x

y como 0x = 0 para x ne 0, dicho valor podría ser igual a 0. Esto ilustra que la forma 00 puede corresponde a diferentes valores y por ello se considera indefinida.

El debate sobre el valor de la forma 00 tiene casi 2 siglos de antigüedad. Durante los primeros días del análisis matemático en que el fundamento formal del cálculo no se había establecido, era común aceptar que 00=1. Sin embargo, en 1821 cuando Cauchy publica el Cours d'Analyse de l'École Royale Polytechnique estableciendo el primer tratamiento riguroso del análisis, lista dicha forma en una tabla de formas indefinidas junto a otras como 0/0. En los 1830s, Libri[1] [2] publicó un argumento para asignar 1 como valor de 00 y August Möbius[3] lo apoyó afirmando erróneamente que

lim_{t to 0^+} f(t)^{g(t)} = 1, siempre que lim_{t to 0^+} f(t) = lim_{t to 0^+} g(t) = 0.

Sin embargo un comentarista que firmó simplemente como «S» proporcionó un contraejemplo

{(e^{-1/t})}^t

cuyo límite cuando tto0^+ es 1 / e, lo cual calmó el debate con la aparente conclusión del incidente que 00 debería permanecer indefinida. Se pueden encontrar más detalles en Knuth (1992).[4]

En la actualidad, suele considerarse la forma 00 como indefinida y no se le asigna valor si no se tiene un contexto en el cual el valor asignado tenga sentido. [5] [6] [7]


Para calcular límites cuyo valor aparente es 00 suele usarse la Regla de l'Hôpital.

[editar] Véase también

[editar] Referencias

  1. Guillaume Libri, Note sur les valeurs de la fonction 00x, Journal für die reine und angewandte Mathematik 6 (1830), 67–72.
  2. Guillaume Libri, Mémoire sur les fonctions discontinues, Journal für die reine und angewandte Mathematik 10 (1833), 303–316.
  3. A. F. Möbius, Beweis der Gleichung 00 = 1, nach J. F. Pfaff, Journal für die reine und angewandte Mathematik 12 (1834), 134–136.
  4. Donald E. Knuth, Two notes on notation, Amer. Math. Monthly 99 no. 5 (May 1992), 403–422.
  5. Peter Alfeld. «Understanding Mathematics» (en inglés). Universidad de Utah. Consultado el 25 de diciembre de 2009. «The problem is similar to that with division by zero. No value can be assigned to 0 to the power 0 without running into contradictions. Thus 0 to the power 0 is undefined!».
  6. Ask Dr. Math. (18 de marzo de 1997). «Why are Operations of Zero so Strange?» (en inglés). The Math forum. Consultado el 25 de diciembre de 2009. «Other indeterminate forms are 0^0, 1^infinity.».
  7. Gentile, Enzo R. (1976) (en español). Notas de Álgebra I (2a edición). Editorial Universitaria de Buenos Aires. pp. 56. «Es útil también definir en el caso x≠0, x0=1. (00 queda indefinido).» 

[editar] Enlaces externos