Blogia

petalofucsia

FILOSOFÍA25: ¿CÓMO TENDRÍA QUE SER EL CUERPO DEL SUPUESTO ALIENIGENA PARA QUE NO SINTIESE "DOLOR"?: El dolor es una experiencia sensorial (objetiva) y emocional (subjetiva), generalmente desagradable, que pueden experimentar todos aquellos seres vivos que disponen de un sistema nervioso.

Dolor

El dolor es una experiencia sensorial (objetiva) y emocional (subjetiva), generalmente desagradable, que pueden experimentar todos aquellos seres vivos que disponen de un sistema nervioso. Es una experiencia asociada a una lesión tisular o expresada como si ésta existiera. La ciencia que estudia el dolor se llama Algología.

 

Contenido

[ocultar]

[editar] Fisiopatología del dolor

La función fisiológica del dolor es señalar al sistema nervioso que una zona del organismo está expuesta a una situación que puede provocar una lesión. Esta señal de alarma desencadena una serie de mecanismos cuyo objetivo es evitar o limitar los daños y hacer frente al estrés. Para ello, el organismo dispone de los siguientes elementos:

  • Detectores de la señal nociva: depende de la existencia de neuronas especializadas en la recepción del dolor, denominadas nociceptores.
  • Mecanismos ultrarrápidos de protección (reflejos): son reacciones rápidas, generadas a nivel de la médula espinal que pueden tener como efecto
    • una reacción de retirada (por ejemplo, cuando se retira la mano rápidamente al tocar una superficie ardiente);
    • una contractura de la musculatura que bloquea la articulación si se ha producido una lesión articular (es el caso del lumbago después de la lesión de un disco intervertebral tras un movimiento en falso).
  • Mecanismos de alerta general (estrés), por activación de los centros de alerta presentes en el tronco cerebral; ello se traduce en un aumento de la vigilancia y de las respuestas cardiovasculares, respiratorias y hormonales que preparan al organismo a hacer frente a la amenaza (mediante la huida o la lucha).
  • Mecanismos de localización consciente e inconsciente de la lesión, a nivel del cerebro; la localización es precisa si la lesión se produce en la piel y difusa o incluso deslocalizada si la lesión afecta un tejido profundo.
  • Mecanismos comportamentales para hacer frente a la agresión: debido a la activación de centros especializados en el cerebro, aumenta la agresividad y pueden producirse manifestaciones de cólera; estas pulsiones tienen como objetivo movilizar la atención del sujeto e iniciar los comportamientos de huida o lucha para preservar la integridad corporal.
  • Mecanismos de analgesia endógenos: en ciertas circunstancias estos mecanismos permiten hacer frente a la amenaza a pesar de que se hayan sufrido graves heridas.

La participación tanto de fenómenos psicológicos (subjetivos) como físicos o biológicos (objetivos) en el dolor es variable según el tipo de dolor y el individuo que lo manifiesta. Existen muchos estudios que tratan de establecer dicha interrelación y explicar la vivencia dolorosa.

Son sinónimos de dolor: nocicepción, algia y sufrimiento.

[editar] Componentes de la fisiopatología del dolor

La fisiología del dolor tiene cuatro componentes que son:

  1. La nocicepción: Es la única etapa común en todas las personas pues es una etapa inicial bioquímica. A su vez se divide en tres subetapas que son la transducción, transmisión y modulación del dolor.
  2. La percepción.
  3. El sufrimiento.
  4. El comportamiento del dolor.

[editar] Mecanismos moleculares de la nocicepción

Los nociceptores son terminaciones nerviosas libres de neuronas sensitivas primarias, cuyos cuerpos neuronales se encuentran en los ganglios raquídeos.1 Esto quiere decir que los nociceptores no están rodeados de estructuras especiales, como es el caso de otros receptores sensoriales de la piel, como los corpúsculos de Pacini que detectan las vibraciones, o los discos de Merkel, que detectan la presión. Hay tres grandes clases de nociceptores: térmicos, mecánicos y polimodales. Todos ellos tienen en común la existencia de umbrales de excitación elevados, en comparación con los receptores del tacto y de la temperatura normales. Esto implica que normalmente no se activan en ausencia de estimulaciones nocivas.

Dado que se trata de terminaciones nerviosas sin estructuras especiales, el término nociceptor se refiere tanto a la fibra nerviosa aferente como a su receptor. Los nociceptores se encuentran en muchos tejidos corporales como la piel, vísceras, vasos sanguíneos, músculo, fascias, tejido conectivo, periostio y meninges. Los demás tejidos corporales apenas cuentan con terminaciones nociceptivas. Estos receptores transmiten la información a través de fibras nerviosas que son clasificadas dependiendo de su diámetro y grado de mielinización en fibras A y C.

[editar] Tipos de nociceptores

  • Fibras A delta: Las fibras A se subdividen en los tipos alfa, beta, gamma y delta. De estos subtipos, las fibras A delta son las que conducen los impulsos nociceptivos. Son fibras de pequeño diámetro y mielinizadas que conducen impulsos nerviosos relativamente rápidos variando de 5 a 50 metros por segundo. Algunas de ellas responden a la estimulación química o térmica en forma proporcional con el grado de lesión tisular; otras, sin embargo, se activan principalmente por estimulación mecánica como presión, lo que evidencia que se localizan en el lugar de la lesión. Algunas fibras A delta pueden tener respuestas polimodales y comenzar a excitarse después de que se haya alcanzado un umbral alto de excitación tras la producción del daño tisular.
  • Fibras C Son fibras nerviosas de conducción lenta, inferior a la rápidez de conducción de las fibras A delta. Son estructuras no mielinizadas o amielínicas, que responden a estímulos térmicos, mecánicos y químicos, y son llamadas nociceptores-C polimodales. Se calcula que existen alrededor de 200 fibras tipo C por centímetro cuadrado de piel.

[editar] Fenómeno de los dos dolores

Los nociceptores térmicos, mecánicos y polimodales están distribuidos por la piel y los tejidos profundos, y normalmente se activan de manera simultánea. Por esta razón, cuando recibimos un estímulo nociceptivo (por ejemplo, al golpearnos un pie), recibimos primero un dolor agudo, seguido después de una pausa por un segundo dolor más persistente, intenso y sordo. El primer dolor se transmite por las fibras A-delta y el segundo por las fibras C.

[editar] Proteínas nociceptivas

La señal nociceptiva debe transformarse en una señal eléctrica para que pueda ser interpretada por el cerebro. Este proceso de transformación se denomina "transducción". La transducción de la señal nociceptiva está ligada a la activación (en la membrana de las terminaciones nerviosas de los nociceptores) de proteínas que conducen a la apertura de canales iónicos. Cuando estos canales iónicos se abren, se produce una despolarización de la membrana, que conlleva la generación de potenciales de acción que se propagan, a través del axón del nociceptor, hacia el sistema nervioso central. En conjunto, los nociceptores deben ser capaces de detectar diferentes tipos de estímulos nocivos, sobre todo químicos, físicos y térmicos, y deben estar equipados de mecanismos de transducción diferentes para cada categoría de estímulo nocivo.

La primera proteína identificada de transducción nociceptiva es el receptor para los vanilloides, como la capsaicina, el agente activo de los pimientos picantes y responsable de la sensación de ardor que se siente en la boca cuando se consumen comidas muy picantes. Este receptor se identificó en neuronas en cultivo obtenidas a partir de ganglios raquídeos disociados. Las neuronas medianas y pequeñas responden a la capsaicina, al calor o al pH ácido (iones H+).2 Esta respuesta es una despolarización debida a la entrada de cationes en la célula. A partir de neuronas C y A-delta, se ha podido clonar el gen responsable de la proteína que responde a la capsaicina, el receptor a los vanilloides 1 (denominado originalmente VR1 y luego TRPV1, "Transient Receptor Potential for Vanilloids - 1").3

En ratones que carecen de las dos copias del gen TRPV1 (ratones knock-out TRPV1 -/-) las neuronas ganglionares en cultivo no responden a 45 °C.4 Los ratones TRPV1-/- tienen 3 veces menos de fibras C sensibles al calor. Por tanto, el receptor TRPV1 no es el único receptor al calor moderado, pero es el responsable de la mayor parte de las respuestas a este tipo de estímulos.

Aunque parece que existen otras moléculas responsables de la transducción de estímulos nociceptivos, su relevancia está aún en discusión. Es el caso de otra molécula de la familia TRP, TRPA1, que podría ser responsable de la mecano-nocicepción y de la sensación de frío doloroso.5

[editar] Neurotransmisores de los nociceptores

La transmisión sináptica entre los nociceptores periféricos y las neuronas del asta dorsal de la médula se realiza mediante neurotransmisores liberados por las terminaciones centrales de los nociceptores. Estos neurotransmisores son de dos tipos: glutamato y neuropéptidos.

[editar] Glutamato

El neurotransmisor principal de las fibras sensoriales aferentes a nivel de la médula, tanto para los nociceptores como para las neuronas no nociceptoras, es el glutamato. El glutamato es un aminoácido que produce potenciales sinápticos rápidos en las neuronas del asta dorsal, y actúa sobre receptores para el glutamato de tipo AMPA (siglas en inglés del ácido alfa-amino-3-hidroxi-5-metil-4-isoxazol propiónico), permeables a los iones Na+. En determinadas circunstancias, la repetición de estímulos dolorosos próximos despolariza la neurona del asta dorsal, por adición de potenciales sinápticos excitatorios. Si la despolarización es suficiente, se activa un segundo receptor para el glutamato: el receptor NMDA (N-metil-D-aspartato) presente en las neuronas de la lámina I. Este receptor sólo se activa (se hace permeable a los iones Ca+2) si la despolarización es suficiente. La entrada de calcio en la célula hace que los receptores AMPA sean más eficaces; como consecuencia, los potenciales sinápticos excitatorios (despolarizantes) son mayores y el dolor aumenta. Este mecanismo de activación de los receptores NMDA explica una parte de los fenómenos de sensibilización central: si se bloquean estos receptores, el fenómeno desaparece.

[editar] Neuropéptidos

Las aferencias nociceptivas primarias que se activan debido a la presencia de lesiones tisulares o estimulaciones excesivas de los nervios periféricos inician también potenciales sinápticos más lentos en las neuronas del asta dorsal, que se deben a la liberación de neuropéptidos, de los cuales los más conocidos son la sustancia P y el CGRP.

Aunque el glutamato y los neuropéptidos se liberan simultáneamente, tienen efectos diferentes sobre las neuronas post-sinápticas: los neuropéptidos amplifican y prolongan el efecto del glutamato. Además, el glutamato tiene un radio de acción limitado a la sinapsis en la cual se libera, debido a que existen mecanismos de recaptura muy eficaces y rápidos, tanto en las terminaciones nerviosas como en las células gliales. Sin embargo, no existen mecanismos de recaptura para los neuropéptidos, que pueden difundirse y ejercer su efecto a distancia. Parece ser que este hecho, combinado con un incremento en la tasa de liberación de neuropéptidos, contribuye al aumento de la excitabilidad del asta dorsal de la médula y a la localización difusa del dolor en muchas situaciones clínicas.

[editar] Bioquímica de la nocicepción

Cuando se produce una lesión o traumatismo directo sobre un tejido por estímulos mecánicos, térmicos o químicos se produce daño celular, desencadenándose una serie de sucesos que producen liberación de potasio, síntesis de bradiquinina del plasma, y síntesis de prostaglandinas en la región del tejido dañado, que a la vez aumentan la sensibilidad del terminal a la bradiquinina y otras sustancias productoras del dolor o algógenas.

Tabla 1. Principales sustancias algógenas
Sustancia Fuente Enzima implicada Inducción de dolor
Potasio células dañadas --- ++
Serotonina trombocitos triptófano hidroxilasa ++
Bradiquinina cininógeno (plasma) calicreína +++
Histamina mastocitos --- +
ATP células dañadas --- +
H+ células dañadas / células inflamatorias --- +/- potencia
Prostaglandinas ácido araquidónico (células dañadas) ciclooxigenasa +/- potencia
Leucotrienos ácido araquidónico (células dañadas) 5-lipooxigenasa +/- potencia
Sustancia P terminaciones libres de aferencias primarias --- +/- potencia
CGRP terminaciones libres de aferencias primarias --- +/- potencia

Las sustancias algógenas inducen la activación de los terminales nociceptivos aferentes, produciendo potenciales de acción que se propagan hacia el sistema nervioso central (SNC) a través de la médula espinal. Estos potenciales de acción se transmiten en sentido inverso (de manera antidrómica) e invaden además otras ramas nerviosas colaterales donde estimulan la liberación de neuropéptidos, como la sustancia P, que está asociada con aumento en la permeabilidad vascular y ocasiona una liberación marcada de bradiquinina, con un aumento en la producción de histamina desde los mastocitos y de la serotonina desde las plaquetas. Tanto la histamina como de serotonina son potentes activadores de los nociceptores.

La liberación de histamina combinada con liberación de sustancia P aumenta la permeabilidad vascular, generando edema (inflamación) y rojez en la zona afectada. El aumento local de histamina y serotonina, por la vía de activación de nociceptores ocasiona un incremento de la sustancia P que autoperpetúa el estímulo doloroso.

Los niveles de histamina y serotonina aumentan en el espacio extracelular, sensibilizando secundariamente a otros nociceptores y es lo que produce la hiperalgesia.

[editar] Alodinia e Hiperalgesia

Se trata de dos fenómenos que resultan como consecuencia de un proceso de sensibilización, la cual puede ser a nivel periférico o a nivel central, inducido por una lesión. Ambos se caracterizan por la disminución del umbral de activación de los nociceptores.

La alodinia consiste en que estímulos que en condciones normales no son nocivos son capaces de generar dolor. Por otra parte, la hiperalgesia consiste en que estímulos normalmente nocivos son percibidos de manera exacerbada.

[editar] Sensibilización periférica

Se produce cuando una estimulación normalmente no nociva en la piel produce una sensación de dolor, o cuando estímulos dolorosos se perciben con más intensidad de lo normal. El ejemplo típico es el dolor anormal que se siente en la piel en contacto con la ropa después de una quemadura solar. Se puede distinguir entre:

  • Alodinia o Hiperalgesia primaria, que se observa en el territorio dañado;
  • Alodinia o Hiperalgesia secundaria: en este caso la sensibilización se observa también en los territorios cutáneos vecinos que no han estado directamente implicados en la lesión; en este caso sólo los estímulos tactiles desencadenan dolor, pero no los térmicos, lo que sugiere un mecanismo diferente entre la hiperalgesia primaria y secundaria.

La sensibilización de los nociceptores después de una lesión o un proceso inflamatorio (como una quemadura solar) se debe a la presencia de agentes químicos, los algógenos, liberados por los tejidos dañados y por la inflamación. Las sustancias algógenas despolarizan los nociceptores, bien directamente (K+), bien activando los receptores de membrana de los nociceptores (por ejemplo, histamina, serotonina, sustancia P, bradiquinina, ATP). La liberación de sustancias algógenas en un tejido dañado y su difusión por el tejido explica que un dolor pueda persistir largo tiempo después de que haya desaparecido el estímulo nocivo y que el dolor pueda extenderse a zonas cutáneas sanas que rodean al tejido inicialmente dañado, acompañado de un edema en la región dañada y de un eritema alrededor de la lesión.

[editar] Sensibilización central

En las lesiones severas o persistentes, las fibras C descargan de manera continua y la respuesta de las neuronas nociceptoras del asta dorsal de la médula aumenta progresivamente con el tiempo (este fenómeno se denomina wind-up o "de dar cuerda"). Esto es consecuencia de un cambio en la eficacia de las sinapsis glutamatérgicas (ver sección glutamato) entre los axones de los nociceptores periféricos y las neuronas del asta dorsal.

[editar] Vías del dolor y elaboración de la sensación dolorosa

El dolor es un fenómeno complejo, que implica no sólo la detección de las señales nocivas, sino que incluye también aspectos cognitivos y emocionales.6

[editar] Asta posterior de la médula espinal y su organización

Es el lugar en donde se encuentra el complejo inhibidor del dolor, en el que intervienen encefalinas y serotonina. Los axones aferentes de las neuronas nociceptoras hacen sinapsis preferentemente en esta área de la médula, que se subdivide en 6 capas diferenciadas: las láminas de Rexed I a VI. Los distintos tipos de nociceptores, con sensibilidades diferentes, hacen sinapsis en láminas distintas.

Tabla 2. Láminas del asta dorsal de la médula y sus funciones
Lámina Input Neurona Vía de proyección Función
I nociceptores C y Aδ nociceptoras específicas SPA, SPH, STT (VPM) dolor
II nociceptores C y Aδ + receptores no nocivos interneuronas excitatorias e inhibitorias --- modulación de la transmisión de las señales aferentes
III + IV receptores no nocivos Aβ neuronas con pequeños campos receptores STT tacto grosero
V nociceptores C y Aδ / receptores no nocivos Aβ + Aδ WDR (wide dynamic range) STT (VPL) dolor, tacto grosero, temperatura no nociva

Nota: STT = haz espinotalámico (spino thalamic tract), también denominado vía anterolateral, SPA = haz espinoparabraquial amigdalino, SPH = haz espinoparabraquial hipotalámico, VPM = núcleo ventral posteromedial del tálamo, VPL = núcleo ventral posterolateral del tálamo

Médula espinal - Sustancia gris.

Las láminas I (la zona marginal) y II (la sustancia gelatinosa) reciben los axones aferentes de los nociceptores periféricos, sobre todo fibras C y Aδ. La mayor parte de las neuronas de la lámina I reciben sólo estímulos nocivos, por lo que se denominan "nociceptores específicos", y se proyectan después sobre los centros superiores del SNC. Sin embargo, las neuronas de amplia gama dinámica (WDR, por wide dynamic range) responden de manera progresiva, primero a estímulos no nocivos de baja intensidad, que se convierten en nocivos cuando la intensidad aumenta. La lámina II contiene casi exclusivamente interneuronas reguladoras, que modulan la intensidad de los estímulos tanto nocivos como no nocivos, y funcionan como filtros de las señales que pasan de la periferia al cerebro.

Las láminas III y IV (el núcleo propio de la antigua terminología) reciben axones aferentes de receptores no nocivos Aβ. Estas neuronas reciben por tanto estímulos no nocivos de la periferia, y tienen campos receptivos pequeños, organizados de forma topográfica.

La lámina V contiene fundamentalmente neuronas WDR que proyectan hacia el tronco cerebral y ciertas regiones del tálamo. Reciben fibras de tipo C, Aδ y Aβ, en muchos casos procedentes de estructuras viscerales. Puesto que en la lámina V convergen aferencias somáticas y viscerales, ello podría explicar el fenómeno del dolor referido, una situación frecuente en clínica, en la que el dolor asociado a una lesión en una víscera se detecta de manera reproducible de un individuo a otro en una zona de la superficie corporal. Así por ejemplo, el 25% de los pacientes con infarto de miocardio, además de los dolores por detrás del esternón y en el alto del abdomen, sienten un dolor referido en la zona de inervación del nervio cubital del brazo izquierdo.

La lámina VI (el núcleo dorsal) está implicada en la propiocepción inconsciente.

[editar] Vías espinales del dolor

Las principales vías implicadas en la transmisión del dolor son:

  • La vía que comunica la médula espinal con la corteza cerebral: el haz o tracto espinotalámico (STT) o vía anterolateral, implicada en la percepción y en las reacciones conscientes en respuesta a una sensación dolorosa; contiene axones procedentes de los siguientes tipos de neuronas (véase la tabla 2):
    • 75% neuronas nociceptivas de amplia gama dinámica (WDR) de la lámina V
    • 25% neuronas nociceptivas específicas de la lámina I
    • Neuronas no nociceptivas Aβ y Aδ
  • Los haces espinoparabraquial amigdalino (SPA) y espinoparabraquial hipotalámico (SPH), relacionados con las reacciones subcorticales al dolor (sin intervención de la corteza cerebral); ambos haces están constituidos casi exclusivamente por axones provenientes de nociceptores específicos de la lámina I.

[editar] El tracto espinotalámico (STT)

Cuantitativamente, es la vía más importante: la interrupción quirúrgica del haz de un lado de la médula disminuye de forma considerable las sensaciones dolorosas de la mitad opuesta del cuerpo, mientras que su estimulación eléctrica provoca una sensación dolorosa.

  1. La formación reticulada (bulbo raquídeo y puente), donde el STT activa reacciones de ajuste cardio-respiratorias (en el bulbo) y de vigilia (bulbo y puente).
  2. El locus coeruleus, un grupo de neuronas que liberan noradrenalina (NA) situado en la parte alta del puente. Su activación por el STT induce una descarga de NA que genera un aumento de la ansiedad y de la vigilancia.
  3. El téctum (en el mesencéfalo), donde el STT activa reacciones de orientación de la cabeza y los ojos.
  4. La sustancia gris periacueductal, donde activa vías descendentes implicadas en la modulación del dolor (analgesia).
  • A nivel del tálamo, el STT contacta con el núcleo ventral posterolateral (VPL) y el núcleo ventral posteromedial (VPM). A su vez, las neuronas de estos núcleos proyectan sus axones sobre el córtex sensorial primario (S1) y sobre el cortex de la ínsula, respectivamente. En general, se puede destacar que:
  1. Las neuronas de origen son sobre todo de tipo WDR de la lámina V, y sólo algunas nociceptivas específicas de la lámina I.
  2. A nivel del diencéfalo, la vía STT-córtex contacta con el hipotálamo.
  3. La vía STT-córtex es importante tanto para el componente sensorial del dolor (mediante la conexión con el área S1) como para el componente afectivo (mediante la conexión con la ínsula).

Como ocurre con el STT, las neuronas nociceptivas de los núcleos VPL/VPM son 75% de tipo WDR y 25% de tipo nociceptivas específicas. Este hecho es el objeto de una controversia sobre las vías precisas del dolor, ya que aunque la vía STT se considera la vía principal de transmisión del dolor, está consituida sobre todo por neuronas WDR, lo cual resulta paradójico. Por esta razón, A.D. Craig propone un modelo basado sobre las neuronas nociceptivas específicas.7 Sin embargo, el hecho de que la vía STT-córtex presente una mayoría de neuronas WDR puede ser pertinente funcionalmente, ya que estas neuronas tienen mucha mejor capacidad que las neuronas nociceptivas específicas para codificar la intensidad del estímulo doloroso, lo que les permite obtener una mejor resolución para distinguir la diferencia entre dos estímulos. Por esta razón, muchos especialistas en el dolor piensan que las neuronas WDR son cruciales para la apreciación sensorial del dolor.

[editar] Los haces SPA y SPH

Ambos haces son importantes en la transmisión del dolor, pues contribuyen al ajuste rápido y a la activación de comportamientos estereotipados. Contrariamente al STT, están compuestos sobre todo de axones de neuronas nociceptivas específicas, situadas en la lámina I, que codifican la información dolorosa con menor precisión que las WDR. Estas dos vías proyectan sobre:

  • La amígdala, cuyo núcleo central está fuertemente implicado en el miedo, la memoria y los comportamientos emocionales. La amígdala forma parte del sistema límbico (término últimamente en desuso por su imprecisión).
  • El hipotálamo, una estructura fundamental en la homeostasis del cuerpo y en la generación de comportamientos estereotipados de miedo, ira y defensa.

Por ello, estas vías participan en la generación de las dimensiones afectivas del dolor, sobre todo en los aspectos primarios, sin intervención de procesos más elaborados, en los que participa la corteza cerebral. (Aunque la vía STT-córtex también contacta con el hipotálamo).

[editar] Integración de los aspectos sensorial y afectivo del dolor

Las neuronas del córtex sensorial primario (S1) tienen campos receptivos pequeños y están implicadas en la localización precisa de la sensación dolorosa, pero no en la sensación difusa característica de la mayoría de los dolores clínicos. Mediante técnicas de imágenes funcionales (por ejemplo, IRMf o imagen por resonancia magnética funcional), se han identificado otras dos áreas implicadas en la respuesta nociceptiva:

  • el córtex cingular anterior (CCA), implicado en el componente emocional del dolor.
  • el córtex de la ínsula, que procesa la información sobre el estado interno del cuerpo (interocepción). Los pacientes con una lesión en la ínsula perciben el dolor, y pueden distinguir entre dolor agudo y sordo, pero no presentan la respuesta emocional habitual al dolor, lo cual implica que la ínsula envía información al CCA que es fundamental para la componente emocional. Estos individuos son incapaces de percibir la amenaza del estímulo nociceptivo y tienen problemas para desarrollar una respuesta adecuada.

El STT está conectado directa e indirectamente con el córtex de la ínsula. La vía indirecta pasa por el córtex parietal posterior, un córtex asociativo multimodal (auditivo, visual y somatosensorial) que permite al cerebro elaborar una representación sensorial que incluye todos los elementos sensoriales de entrada en un momento dado, además de elementos procedentes de la memoria, que permite al individuo evaluar la amenaza real que constituye la fuente origen de la sensación dolorosa. Esta representación global se comparte con el córtex asociativo multimodal frontal, encargado de definir las prioridades y elaborar una estrategia para hacer frente a la situación, teniendo en cuenta el contexto general y la experiencia pasada.

En paralelo, el córtex de la ínsula, que proyecta sobre la amígdala y el hipotálamo, modula la componente emocional subcortical, que había sido activada inicialmente por las vías directas SPA y SPH.

La ínsula y el córtex parietal posterior estimulan a su vez el CCA, una estructura que forma parte de la red emocional y motivacional del cerebro, relacionado con el sistema límbico. Podría tener una función de integración de los elementos emocionales, permitiendo establecer un valor emocional que permite definir las prioridades de acción, completando la acción del córtex multimodal frontal, lo que capacita al individuo a definir si debe afrontar la situación que generó el dolor o bien huir, según las circunstancias.

[editar] Características del dolor

Según las características del dolor se puede conocer su origen o etiología y por lo tanto su diagnóstico, su gravedad o pronóstico y tratamiento. Estas características son:

  • Localización: Dolor de cabeza (cefalea), dolor torácico, dolor abdominal...
  • Tipo: Punzante, Opresivo, Lacerante, Cólico, etc.
  • Duración: El tiempo desde su aparición, desde cuándo.
  • Periodicidad: El de la úlcera gastroduodenal,...
  • Frecuencia: Es el número de veces que ha ocurrido el dolor de similares características.
  • Intensidad: Generalmente cuando es el primer dolor suele ser intenso o fuerte, pero cuando se ha repetido varias veces en el tiempo, se puede cuantificar.
  • Irradiación: Es el trayecto que recorre el dolor desde su localización original hasta otro lugar.
  • Síntomas acompañantes: Como náuseas, vómitos, diarrea, fiebre, temblor...
  • Signos acompañantes: Sudoración, palidez, escalofríos, trastornos neurológicos...
  • Factores agravantes: Son los factores que aumentan el dolor por ejemplo tras la ingesta, determinados movimientos... y otros factores a los que atribuye el paciente.
  • Factores atenuantes: Son los factores que disminuyen el dolor, por ejemplo el descanso, posiciones corporales.
  • Medicamentos: Que calman o que provocan el dolor.

[editar] Factores que modulan el dolor

Existen múltiples factores psicológicos y físicos que modifican la percepción sensorial del dolor, unas veces amplificándola y otras veces disminuyéndola.

  1. Personalidad: Estado de ánimo, expectativas de la persona, que producen control de impulsos, ansiedad, miedo, enfado, frustración.
  2. Momento o situación de la vida en la que se produce el dolor.
  3. Relación con otras personas, como familiares, amigos y compañeros de trabajo.
  4. Sexo y edad.
  5. Nivel cognitivo.
  6. Dolores previos y aprendizaje de experiencias previas.
  7. Nivel intelectual, cultura y educación.
  • Ambiente: ciertos lugares (Ejemplo: ruidosos, iluminación intensa), tienden a exacerbar algunos dolores (Ejemplo: cefaleas)

[editar] Clasificación del dolor

[editar] Según el tiempo de evolución

  • Dolor crónico: Es el dolor que dura más de tres meses, como el dolor oncológico.
  • Dolor agudo: Es el dolor que dura poco tiempo, generalmente menos de dos semanas, como un dolor de muelas, o de un golpe.

Es difícil diferenciar un dolor agudo de un dolor crónico pues el dolor cursa de forma oscilante y a veces a períodos sin dolor. El dolor postoperatorio es un dolor agudo, pero a veces se prolonga durante varias semanas. Las migrañas o la dismenorrea ocurre durante dos o tres días varias veces al año y es difícil clasificarlas como dolor agudo o crónico.

[editar] Según la fisiología del dolor

  • Dolor nociceptivo: Es el producido por una estimulación de los nociceptores, es decir los receptores del dolor, provocando que el "mensaje doloroso" sea transmitido a través de las vías ascendentes hacia los centros supraespinales y sea percibido como una sensación dolorosa. Por ejemplo un pinchazo.
  • Dolor neuropático: Es producido por una lesión directa sobre el sistema nervioso, de tal manera que el dolor se manifiesta ante estímulos mínimos o sin ellos y suele ser un dolor continuo.

[editar] Según la localización del dolor

  • Dolor somático: Está producido por la activación de los nocireptores de la piel, hueso y partes blandas. Es un dolor agudo, bien localizado, por ejemplo un dolor de hueso o de una artritis o dolores musculares, en general dolores provenientes de zonas inervadas por nervios somáticos. Suelen responder bien al tratamiento con analgésicos según la escalera de la OMS.
  • Dolor visceral: Está ocasionado por la activación de nociceptores por infiltración, compresión, distensión, tracción o isquemia de vísceras pélvicas, abdominales o torácicas. Se añade el espasmo de la musculatura lisa en vísceras huecas. Se trata de un dolor pobremente localizado, descrito a menudo como profundo y opresivo, con la excepción del dolor ulceroso duodenal localizado a punta de dedo. Cuando es agudo se acompaña frecuentemente de manifestaciones vegetativas como náuseas, vómitos, sudoración, taquicardia y aumento de la presión arterial. Con frecuencia, el dolor se refiere a localizaciones cutáneas que pueden estar distantes de la lesión, como por ejemplo el dolor de hombro derecho en lesiones biliares o hepáticas.

[editar] El dolor en la historia humana

La enfermedad y el dolor han estado unidos con la vida, durante la historia de la humanidad. En restos prehistóricos se han encontrado signos de lesiones óseas como osteomielitis, osteosarcosmas, abscesos periodontales, seguramente muy dolorosos, y desde el Paleolítico el hombre viene causando dolor mediante técnicas quirúrgicas no precisamente incruentas, como la trepanación.

Durante milenios el dolor y sus remedios se enmarcaron en una concepción mágica de la enfermedad, aunque para ello se aprovecharan gran cantidad de hierbas, cortezas y raíces, en una especie de farmacopea, donde lo eficaz y lo ineficaz se mezclaban bajo el aura de lo sobrenatural.

Hasta los griegos presocráticos del siglo VI a. C., las enfermedades y sus tratamientos no se concebían en términos naturales y racionales. Varios siglos de medicina científica se reúnen en los casi 70 libros del Corpus Hipocraticum.

A lo largo de 20 siglos los médicos se han enfrentado al dolor con grandes dosis de literatura y superstición, y sólo a partir de la década de 1960, se ha evolucionado del empirismo y la ineficacia al refinamiento terapéutico que se obtiene del conocimiento de la fisiopatología. Desde entonces se crean las primeras Unidades para Estudio y Tratamiento del Dolor, conducidas por Especialistas en Anestesiología y Reanimación, principalmente.

[editar] Tratamiento

En la actualidad, hay dos líneas de tratamiento del dolor:

  1. La terapia mediante farmacología consiste en el suministro de drogas para paliar el síndrome álgico.
  2. La terapia mediante medicina física o electromedicina consiste en la aplicación de corrientes de distinta índole y ondas sónicas para tratar el dolor, dentro de la amplia gama de dispositivos de electroterapia disponibles.

En el tratamiento del dolor, hay que distinguir entre:

  1. Tratamiento del Dolor agudo es el "normal" o habitual. Es el que se siente cuando nos golpeamos un dedo, nos rompemos un hueso, tenemos dolor de muelas o caminamos tras una operación quirúrgica importante.
  2. Tratamiento del Dolor crónico es una "enfermedad del dolor", un dolor constante, en la que el dolor se siente cada día, mes tras mes, y parece imposible de curar.
  3. Tratamiento del dolor en el cáncer, en el cáncer terminal y en otras enfermedades que cursan con dolor crónico y agudo está descrito en la Escalera analgésica de la OMS (Organización Mundial de la Salud). En ella se describen los distintos tratamientos y medicamentos.

El general, resulta más sencillo tratar el dolor agudo, que normalmente se ha generado debido a la presencia de daño en un tejido blando, una infección y/o una inflamación. Normalmente se trata con medicamentos, usualmente analgésicos, o mediante técnicas apropiadas para eliminar la causa y controlar la sensación dolorosa. Si el dolor agudo no se trata adecuadamente, en algunos casos puede degenerar en dolor crónico.8

A menudo, los pacientes que sufren de dolor crónico son tratados por varios médicos especialistas. Aunque normalmente se genera por una lesión, una operación o una enfermedad obvia, el dolor crónico puede no tener una causa aparente. Este problema puede generar problemas psicológicos que confunden al paciente y a los profesionales médicos.

[editar] Anestesia

Artículo principal: Anestesia

Es la condición en la cual las sensaciones (no sólo de dolor) están bloqueadas por una droga que induce una falta de detección. Puede ser total (anestesia general) o parcial, afectando a una parte mínima del cuerpo (anestesia local o regional).

[editar] Analgesia

Artículo principal: Analgésico

La analgesia es una alteración de la sensación de dolor sin pérdida de consciencia. El cuerpo posee un sistema endógeno de analgesia, que puede complementarse con analgésicos para regular la nocicepción y el dolor. La analgesia puede producirse en el sistema nervioso central, en los nervios periféricos o en los nociceptores. De acuerdo con la teoría de control de entrada del dolor, la percepción del dolor puede ser modulada por el cuerpo.

El sistema central de analgesia endógena está mediado por tres componentes principales:

El sistema periférico de regulación consiste de diferentes tipos de receptores de opioides que se activan en respuesta a la unión de las endorfinas del organismo. Estos receptores existen en muchas áreas del cuerpo e inhiben la descarga de neuronas estimuladas por nociceptores.

La teoría de control de entrada del dolor postula que la nocicepción es "modulada" por estímulos no nocivos como la vibración. Así, frotarse una rodilla golpeada parece reducir el dolor al evitar su transmisión al cerebro. El dolor también se "modula" por señales que descienden del cerebro hacia la médula espinal para suprimir (o en algunos casos aumentar) la información nociceptiva entrante.

[editar] Medicina complementaria y alternativa

Un sondeo de americanos adultos identificó que el dolor es la razón más común por la que la gente utiliza la medicina complementaria y alternativa.

La medicina tradicional china considera el dolor como un qi "bloqueado", similar a una resistencia eléctrica, y se considera que tratamientos como la acupuntura son más efectivos para el dolor no traumático que para el dolor traumático. Aunque el mecanismo no se comprende completamente, la acupuntura podría estimular la liberación de grandes cantidades de opioides endógenos.9

La medicina alternativa propone el uso de suplementos nutricionales tales como curcuma, glucosamina, condroitín sulfato, bromelaina y ácidos grasos omega-3. También se han relacionado la vitamina D y el dolor, pero aparte de en la osteomalacia (raquitismo), los ensayos clínicos controlados han dado resultados poco convincentes.10

Se ha probado que la hipnosis así como diversas técnicas perceptivas que provocan estados alterados de la consciencia pueden ser una ayuda importante en el tratamiento de todos los tipos de dolor.11

Asimismo, algunos tipos de manipulación física o ejercicio muestran también interesantes resultados.12

[editar] Dolor y placer

Generalmente los conceptos de dolor y placer son opuestos, se supone que si hay placer no puede haber dolor y viceversa. Pero también es sabido que en situaciones alteradas se puede llegar a sentir placer haciendo daño a otra persona (sadismo), obtener placer al sentir dolor (masoquismo) o ambos a la vez (sadomasoquismo). En otras ocasiones, aunque el dolor en sí mismo no produzca placer, sí puede darse la circunstancia de que haya sido causado por un proceso satisfactorio en su conjunto, lo cual puede ocasionar cuadros en los que el dolor y placer se entremezclan.

[editar] En la metafísica

Desde un punto de vista metafísico, se ha definido el dolor como "el esfuerzo necesario para aferrarse a un pensamiento negativo". Esta idea se basa en la creencia de que los seres humanos estamos dotados de una serie cualidades innatas, que son las cualidades naturales de la propia vida: armonía, sabiduría, fuerza, amor, etc. Serían todas la cualidades consideradas como "positivas". Según este punto de vista, estas cualidades se manifiestan en la persona de forma natural y espontánea sin necesidad de ningún esfuerzo o acción concreta. Cuando alguien reprime esta manifestación natural negándola en su pensamiento se produce en él o ella lo que percibimos como dolor. La causa de esta resistencia o represión estaría normalmente en las creencias adquiridas en la sociedad por la persona.13

[editar] Véase también

[editar] Enlaces externos

[editar] Referencias

  1. Julius, D.; Basbaum, A.I. (2001), Molecular mechanisms of nociception, 413, consultado el 2009-07-01 
  2. Welc h, J.M.; Simon, S.A.; Reinhart, P.H. (2000), «The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and», Proceedings of the National Academy of Sciences 97 (25): 13889, consultado el 2009-06-29 
  3. Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. (1997), «The capsaicin receptor: a heat-activated ion channel in the pain pathway», Nature 389 (6653): 816–824, consultado el 2009-06-27
  4. Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I. et ál. (2000), «Impaired nociception and pain sensation in mice lacking the capsaicin receptor», Science 288 (5464): 306, consultado el 2009-06-29
  5. Story, G.M.; Gereau, R.W. (2006), «Numbing the senses: role of TRPA1 in mechanical and cold sensation», Neuron 50 (2): 177–180, consultado el 2009-06-30
  6. Price, D.D. (2002), «Central neural mechanisms that interrelate sensory and affective dimensions of pain», Mol Interv. 2 (6): 392–403,339, consultado el 2009-08-30
  7. D. Craig A. (2003), «Pain mechanisms: labeled lines versus convergence in central processing», Annu Rev Neurosci. 26: 1–30, PMID 12651967
  8. Dahl JB, Moiniche S (2004). «Pre-emptive analgesia». Br Med Bull 71:  pp. 13–27. doi:10.1093/bmb/ldh030. PMID 15596866.
  9. Sapolsky, Robert M. (1998). Why zebras don't get ulcers: An updated guide to stress, stress-related diseases, and coping. New York: W.H. Freeman and CO. ISBN 0-585-36037-5.
  10. Straube S, Andrew Moore R, Derry S, McQuay HJ (January 2009). «Vitamin D and chronic pain». Pain 141 (1-2):  pp. 10–3. doi:10.1016/j.pain.2008.11.010. PMID 19084336.
  11. Robert Ornstein PhD, David Sobel MD (1988). The Healing Brain. New York: Simon & Schuster Inc. pp. 98–99. ISBN 0-671-66236-8.
  12. Douglas E DeGood, Donald C Manning MD, Susan J Middaugh (1997). The headache & Neck Pain Workbook. Oakland, California: New Harbinger Publications. ISBN 1-57224-086-5.
  13. Ray, Sondra (1984). Renacimiento en la nueva era. Móstoles (Madrid, España): Neo Person Ediciones. 84-88066-03-1.

FILOSOFÍA24: TIPOS DE ÓRDENES; COMBINATORIA; combinatoria s. f. Parte de las matemáticas que estudia las combinaciones, variaciones y permutaciones de un número finito de objetos.

Combinatoria

 

 

La combinatoria es una rama de la matemática perteneciente al área de matemáticas discretas que estudia la enumeración, construcción y existencia de propiedades de configuraciones que satisfacen ciertas condiciones establecidas.

 

Contenido

[ocultar]

[editar] Áreas de la combinatoria

No existe una clasificación tajante de lo que constituye una subárea, sino que todas comparten cierto grado de traslape entre sí, al igual que con otras ramas de la matemática discreta. Diferentes autores proponen varias divisiones de la combinatoria por lo que cualquier listado es meramente indicativo. Por ejemplo, algunos autores consideran la teoría de gráficas como una subárea de la combinatoria, mientras que otros la consideran un área independiente.

Entre las subdivisiones más comunes se encuentran las siguientes.

[editar] Combinatoria enumerativa

La combinatoria enumerativa o enumeración estudia los métodos para contar (enumerar) las distintas configuraciones de los elementos de un conjunto que cumplan ciertos criterios especificados.

Esta fue una de las primeras áreas de la combinatoria en ser desarrollada, y como otras áreas más recientes se estudian sólo en cursos especializados, es común que se haga referencia a esta subárea cuando se menciona combinatoria en entornos escolares.

Ejemplo.

Considérese el conjunto S = {A,E,I,O,U}. Podemos imaginar que estos elementos corresponden a tarjetas dentro de un sombrero.

  • Un primer problema podría consistir en hallar el número de formas diferentes en que podemos sacar las tarjetas una después de otra (es decir, el número de permutaciones del conjunto).
Por ejemplo, dos formas distintas podrían ser: EIAOU o OUAIE.
  • Después, se puede preguntar por el número de formas en que se puede sacar sólo 3 tarjetas del sombrero (es decir, el número de 3-permutaciones del conjunto).
En este caso, ejemplos pueden ser IOU, AEI o EAI.
  • También se puede preguntar sobre cuales son los posibles grupos de 3 tarjetas que se pueden extraer, sin dar consideración al orden en que salen (en otras palabras, el valor de un coeficiente binomial).
Aquí, consideraríamos AOU y UAO como un mismo resultado.
  • Otro problema consiste en hallar el número de formas en que pueden salir 5 tarjetas, una tras otra, pero en cada momento se regresa la tarjeta escogida al sombrero.
En este problema los resultados posibles podrían ser EIOUO, IAOEU o IEAEE.

La combinatoria enumerativa estudia las técnicas y métodos que permiten resolver problemas anteriores, así como otros más complejos, cuando el número de elementos del conjunto es arbitrario. De esta forma, en el primer ejemplo la generalización correspondiente es determinar el número de formas en que se pueden ordenar todos los elementos de un conjunto con n elementos, siendo la respuesta el factorial de n.

[editar] Combinatoria extremal

El enfoque aquí es determinar qué tan grande o pequeña debe ser una colección de objetos para que satisfaga una condición previamente establecida;

Ejemplo.

Considérese un conjunto S. con n elementos. A continuación se empieza a hacer un listado de subconjuntos de tal manera que cualquier pareja de subconjuntos del listado tenga algún elemento en común.

Para clarificar, sea S = {A,B,C,D} y un posible listado de subconjuntos podría ser

{B, C}, {A, B}, {A, B, C, D}, {B, D}, ldots

Conforme aumenta el listado (y dado que hay una cantidad finita de opciones), el proceso se hace cada vez más complicado. Por ejemplo, no podríamos añadir el conjunto {A, D} al listado pues aunque tiene elementos en común con los últimos 3 subconjuntos del listado, no comparte ningún elemento con el primero.

La pregunta sobre qué tan grande puede hacerse el listado de forma que cualquier pareja de subconjuntos tenga un elemento en común es un ejemplo de problema de combinatoria extremal (o combinatoria extrema). La respuesta a este problema es que si el conjunto original tiene n elementos, entonces el listado puede tener como máximo 2n − 1 subconjuntos.

[editar] Véase también

[editar] Referencias

[editar] Enlaces externos

FILOSOFÍA24: SUCESIONES. Serie de elementos que se suceden unos a otros, ya sea en el espacio, en el tiempo o en un orden.

Sucesión matemática

En matemática se incluye sucesión para designar la existencia de elementos encadenados o sucesivos.

Se excluye totalmente la sinonimia con el término serie.

En textos académicos se suele llamar simplemente sucesión con el bien entendido que todas son del mismo tipo. Esto no impide la existencia de sucesiones de diversas entidades matemáticas.

Cuando abundan sucesiones de todo tipo se puede cambiar incluso el nombre de sucesión por otro.

Véase secuencia, tupla, colección, familia y conjuntos en matemáticas.

Contenido

[ocultar]

[editar] Definiciones

Las diferentes definiciones suelen estar ligadas al área de trabajo, la más común y poco general es la definición de sucesión numérica, en la práctica se usan sucesiones de forma intuitiva.

[editar] Definición abstracta

Clase de finitos o numerables objetos ordenados.....

[editar] Definición conjuntista

Una sucesión en un conjunto X es una enumeración de elementos de X, es decir una aplicación de mathbb{N} en X.

[editar] Notación

Notaremos por left{{x_n}right}_{nepsilonmathbb{N}} a una sucesión, donde x la identifica como distinta de otra digamos left{{y_n}right}_{nepsilonmathbb{N}}.

La notación es permisiva en cuanto a su modificación si realmente es necesario.

[editar] Definición de término general

Llamaremos término general de una sucesión a x_n^{},donde {nepsilonmathbb{N}} indica el lugar que ocupa en dicha sucesión.

[editar] Definición de parcial

Llamaremos parcial de left{{x_n}right}_{nepsilonmathbb{N}} a una sucesión left{{x_{n_i}}right}_{n_iepsilonmathbb{N}} donde n_i^{}<n_{i+1}^{}

[editar] Ejemplos en distintas áreas

Estos ejemplos pretenden ser una pequeña muestra de la infinidad, propiamente dicha, de usos que tienen dichas sucesiones en matemáticas.

El trabajo interno en el desarrollo de cada tema en cada área obliga a diversificar el modo de nominar y notar las sucesiones, haciéndose frecuente el uso de índices, subíndices y superíndices para salvar la sobrecarga de notación y hacerlas más legibles y estéticas en cuanto a la presentación.

[editar] En mathbb{C}^n

Se puede tener una sucesión left{{V^{(i)}}right}_{iepsilonmathbb{N}} tal que  {V^{(i)}} {:=(a_1^{(i)},...,a_n^{(i)}),donde; a_j^{(i)}}in mathbb{C}

[editar] En el espacio de las sucesiones finitas en mathbb{C}

Se puede tener una sucesión left{ {a^{(i)}}right}_{iepsilonmathbb{N}} tal que  {a^{(i)}} {:=(a_1^{(i)},...,a_{n_i}^{(i)} ,0,...),donde; a_j^{(i)}}in mathbb{C}-left{0right}

[editar] En K[x]

Un polinomio P(x) in K[x] no es más que una sucesión finita left{{a_n}right}_n tal que a_n in K representada como P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n.

[editar] En  M_{m times n}(k)

Se puede tener una sucesión left{{A_i}right}_{i in mathbb{N}} tal que A_i:= begin{pmatrix} a_{1,1}^{(i)} & ldots & a_{1,n}^{(i)}  vdots && vdots  a_{m,1}^{(i)} & ldots & a_{m,n}^{(i)} end{pmatrix}, donde a_{j,k}^{(i)} in K.

[editar] En un espacio vectorial topológico

Se puede tener una sucesión left{{V_{i}^{}}right}_{iepsilonmathbb{N}}, donde  V_n^{}:= alpha_n B, donde  alpha_n in mathbb{R} es una sucesión real arbitraria y B un abierto.

[editar] Sucesiones funcionales

Se puede tener una sucesión de funciones continuas left{{{f(x)}_n}right}_{nepsilonmathbb{N}}=sin(x)^n.

[editar] En el lenguaje proposicional

Sea A_{}^{} un alfabeto, llamaremos A_{}^n al conjunto de sucesiones finitas de n elementos de A, se define inductivamente por la sucesión de productos cartesianos siguiente: A^1=A, A^2=Atimes A, ... , A^n:=A^{n-1}times A

  • así {<}a_1,...,a_n>:={<<}a_1,...,a_{n-1}{>},a_n{>}in A^n {,y;} a_i:={<}a_i{>}in A.

[editar] En homología simplicial

El complejo de cadenas simplicial del complejo simplicial K, no es más que una determinada sucesión de grupos abelianos y morfismoskate

[editar] En el lenguaje de las categorías

Sea  mathcal{A} una categoría, podemos tener una sucesión left{{A_n}right}_{n in mathbb{N}}, donde A_{n}^{} in Ob({ mathcal{A} }).

[editar] Sucesiones numéricas

Una sucesión numérica se formaliza como una aplicación de los naturales en los reales, es decir :

 begin{matrix} u:& mathbb{N} & to & mathbb{R}  & n & to & u_n end{matrix}

que escribiremos simplemente como left{{u_n}right}_{n in mathbb{N}} o, si se da por entendido que los subíndices son enteros, también vale left{{u_n}right}_{n geq 0}.

El nombre que recibe la sucesión también puede hacer referencia a los valores que toma sobre los reales, así, si la imagen de u_{}^{} fuesen los racionales, es decir fracciones enteras del tipo frac{a}{b}, ; b neq 0, podemos llamarla sucesión de números racionales, y lo mismo para los irracionales, naturales, enteros, algebraicos, trascendentes, ... .

[editar] Notas y ejemplos básicos

Para definir término a término la sucesión, se indica para cada termino el valor que le corresponde directamente:

  • El primero es u_0^{}= a por ejemplo 3,
  • el segundo es u_1^{}= a por ejemplo -10,
  • el tercero es u_2^{}= a por ejemplo 9, y así sucesivamente.
  • Para indicar, si hace falta, el comportamiento del resto de los valores, se usa el término general y se escribe acompañado como , ; ... ; ,u_n^{}= a por ejemplo número al azar, ... .
Los puntos suspensivos dan por entendido que los valores de la sucesión se omiten ya que estos quedan claramente determinados hasta el infinito, siendo el n-ésimo valor, u_n^{}=, el portador del método para generar el valor de cada término, y el nombre n_{}^{} puede ser cambiado, si hace falta, por i_{}^{}, j_{}^{}, k_{}^{}, l_{}^{}, ... .

Materialmente seria: 3, -10, 9, 7, ... , número al azar, ... .

[editar] Sucesión finita

Diremos que una sucesión es finita si determinamos su último termino, por ejemplo el n-ésimo:

Genéricamente:  a_0, ; a_1, ; a_2, ; ... ; , ; a_i , ; ... ; , ; a_n , donde a_i^{} sería el término general si hiciese falta. ejemplo: 100, 99, 98, ... , 1, 0.

[editar] Sucesión constante

Diremos que una sucesión es constante si todos los términos valen un mismo valor, a_{}^{}, es decir, un mismo número real cualquiera, ejemplo:

Genéricamente u_0^{} = a, ; u_1 = a, ; u_2 = a, ; u_3 = a, ; ... ; , ; u_i = a,;... . ejemplo: si a_{}^{}=1 queda como 1, 1, 1, 1, ... ,1 ,... , es decir, que todos los valores son el mismo, 1.

[editar] Sucesión creciente

Si imponemos al termino general, de una sucesión numérica, la condición que a_i^{} < a_{i+1}, es decir, que el siguiente término,  a_{i+1}^{}, siempre sea mayor estricto que su predecesor, a_i^{}, se llaman sucesiones estrictamente crecientes:

Para naturales: 1, 2, 3, 4, 5, 6, ... . Para enteros: -10, -9, -8, -7, -6, ... . Para reales: -2'01, ; -1, ; 0, ; sqrt{2}, ; e_{}^{}, ; pi, ; ,;....

Si imponemos a_i^{} leq a_{i+1}, es decir, una desigualdad no estricta, entonces se pueden incluir, entre otras, las sucesiones constantes.

[editar] Sucesión decreciente

Al igual que las crecientes tenemos, según el termino general, que:

  • si a_i^{} geq a_{i+1} entonces la sucesión es decreciente,
  • si a_i^{} > a_{i+1} es estrictamente decreciente.

[editar] Sucesión alternada

Intuitivamente se llama sucesión alternada cuando alterna valores de signo opuesto, como an = ( − 1)n que nos genera la sucesión: a0=1, -1, 1, -1, 1, -1, ... . Utilizada por las series llamadas series alternas.

[editar] Según el término general

El termino general de la sucesión queda definido de forma explícita si su valor está en función del valor del subíndice, es decir, si  u_i^{} = f(i) donde  f: mathbb{N} to mathbb{R} es una función cualquiera como por ejemplos:

 u_i^{} = i + 1 que daría la sucesión de naturales sucesivos, es decir, 1, 2, 3, 4, 5, ... .  u_i^{} =2 i que daría todos los números pares incluido el cero, es decir, 0, 2, 4, 6, 8, ... .  u_i^{} = i^2 que daría la sucesión de cuadrados siguiente, 0, 1, 4, 9, 16, ... .

Dada una función  f: mathbb{N} to mathbb{R} , llamaremos extensión en los reales de f_{}^{} a una función  P: mathbb{R} to mathbb{R} cuyos valores coinciden en el dominio de f_{}^{}, es decir, f_{ | mathbb{N}}=P_{ | mathbb{N}}.

  • Error fatal es nombrar a la extensión en los reales con el mismo nombre ¡ f: mathbb{R} to mathbb{R} !, pues, se trata de una asociación totalmente arbitraria y no univoca que trae confusión y no tiene sentido para algunas funciones definidas a trozos. Compruébese que  f(i)=u_i^{}=f(i)+sin(i pi) solo si la sucesión que determinan sobre los enteros es la misma, pero ¡no son la misma función!, llamemos a la extendida por ejemplo  P_{}^{}, ; Q_{}^{}, ; phi_{}^{} o  psi_{}^{} si es un polinomio, o g_{}^{} o h_{}^{} si son funciones trigonométricas, agregando subíndices si hace falta.

Perturbación.GIF

La función f puede adquirir propiedades de la extendida P, si existe P con dichas propiedades, como límites al infinito, monotonía, acotaciones... .

Casos en los que f no puede extenderse sobre los reales:

  • si definimos un como el número de factores propios de n.

El término general de la sucesión queda definido de forma implícita si su valor depende de sus predecesores, esto se indica en general del modo siguiente:

Dados previamente los valores de u_0, ; u_1,; ... ; ,; u_n, podemos definir el término general de forma inductiva como u_{i+1} = f(u_{i-n}, ; ... ; , u_i) , ; i ge n como por ejemplo con la ecuación en diferencias u_{i+1} = a_0 u_{i-n} + ; ... ; + a_n u_i  + b_n , ; i ge n, ; a_0, ; ... ; , ; a_n, ; b_n in mathbb{R} .

[editar] Ejemplos

[editar] Véase también

[editar] Enlaces externos

 


El contenido de este artículo incorpora material de una entrada de la Enciclopedia Libre Universal, publicada en castellano bajo la licencia GFDL.


FILOSOFÍA24: ORDEN ( Forma de estar colocadas adecuadamente las cosas, personas o hechos en un lugar o de sucederse en el tiempo según un determinado criterio: orden alfabético; se clasifican por orden de llegada; pon los libros en orden; cuenta las cosas por el orden en que sucedieron. desorden.) FRENTE A "CAOS".

Orden

Este artículo trata sobre el concepto de orden. Para otros usos de este término, véase Orden (desambiguación).

Uno de los significados de orden es la propiedad que emerge en el momento en que varios sistemas abiertos, pero en origen aislados, llegan a interactuar por coincidencia en el espacio y el tiempo, produciendo, mediante sus interacciones naturales, una sinergia que ofrece como resultado una realimentación en el medio, de forma que los elementos usados como materia prima, dotan de capacidad de trabajo a otros sistemas en su estado de materia elaborada.1

La capacidad de algunos sistemas de recordar el pasado (de tener memoria), produce en ese sistema la capacidad de establecer un método organizado y coordinado para repetir el logro alcanzado por selección natural, y acelerar el objetivo a conseguir. En ese proceso, se paga un precio: la pérdida de su individualidad, mayor dependencia de nuevos elementos que pueden existir gracias a una economía más holgada, pero ganando en especialización. Bajo este enfoque, el orden es la organización de las partes para hacer algo funcional y preciso, lo cual implica la presencia de un cauce que establece una transacción de cargas con menor coste y por lo tanto con potencial de desarrollo a una psicodinámica emergente, dando la oportunidad al observador de imputar una finalidad intencional y, como puede deducirse, de una acción inteligente.

Contenido

[ocultar]

[editar] Ámbitos de orden

En el ámbito del orden social, el orden se remite a la forma en la cual las comunidades se organizan. Así, existen las sociedades jerárquicas, que se basan en una organización social rígida y piramidal, o en sus antípodas las sociedades anarquistas, cuyo orden es mucho más flexible y requiere, en consecuencia, fuertes valores de conducta, como el respeto por la libertad del otro, la igualdad y la responsabilidad por los actos propios. En las diferentes formas de organización social, los factores determinantes son la cultura y los fenómenos particulares que hacen a la naturaleza de cada una de ellas, y no necesariamente las leyes escritas, las cuales tan sólo reflejan las leyes sociales creadas por la comunidad, o alguna de sus partes sociales.

[editar] Otros puntos de vista

Bajo otro punto de vista, el orden no es únicamente una acción inteligente, sino todo aquello que funciona de una determinada manera. Así, aunque quien observa el orden y en última instancia lo define es un individuo inteligente, el orden se encuentra naturalmente en la disposición de sucesos u otros conceptos observables. Aquello que denominamos tiempo, presenta un orden natural para los sucesos y, guiados al menos por los conocimientos concretos del ser humano hasta el día de hoy, el orden cronológico es unidireccional e invariable.

Los antónimos de orden pueden ser, según el contexto en que sea utilizado, desorganización, desorden y caos.

De la misma forma, existen órdenes de órdenes, que solemos llamar estructuras. Existen multitud de estructuras en los más diversos campos tanto de la naturaleza como de la vida social.

[editar] Significados en diferentes disciplinas

Utilizado en masculino un orden puede referirse a un criterio de ordenamiento. En filosofía, orden (en griego cosmos) es lo que se opone al caos. En biología, orden es una de las categorías de la taxonomía. En ciencias sociales, generalmente se refiere al orden social o al orden público. En matemáticas, los diferentes tipos de orden son tratados por la teoría del orden.

Utilizado en femenino, una orden es un imperativo. En el catolicismo puede referirse a las Órdenes religiosas. Hay gran número de honores y condecoraciones en gran número de países que llevan el nombre de Orden.2

[editar] Véase también

[editar] Referencias

[editar] Enlaces externos

FILOSOFÍA24: NEURONA. Las neuronas (del griego νεῦρον, cuerda, nervio1 ) son un tipo de células del sistema nervioso cuya principal característica es la excitabilidad eléctrica de su membrana plasmática; están especializadas en la recepción de estímulos y conducción del impulso nervioso (en forma de potencial de acción) entre ellas o con otros tipos celulares, como por ejemplo las fibras musculares de la placa motora.

Neurona

Diagrama básico de una neurona.

Las neuronas (del griego νεῦρον, cuerda, nervio1 ) son un tipo de células del sistema nervioso cuya principal característica es la excitabilidad eléctrica de su membrana plasmática; están especializadas en la recepción de estímulos y conducción del impulso nervioso (en forma de potencial de acción) entre ellas o con otros tipos celulares, como por ejemplo las fibras musculares de la placa motora. Altamente diferenciadas, la mayoría de las neuronas no se dividen una vez alcanzada su madurez; no obstante, una minoría sí lo hace.2 Las neuronas presentan unas características morfológicas típicas que sustentan sus funciones: un cuerpo celular llamado soma o «pericarion», central; una o varias prolongaciones cortas que generalmente transmiten impulsos hacia el soma celular, denominadas dendritas; y una prolongación larga, denominada axón o «cilindroeje», que conduce los impulsos desde el soma hacia otra neurona u órgano diana.3

La neurogénesis en seres adultos, fue descubierta apenas en el último tercio del siglo XX. Hasta hace pocas décadas se creía que, a diferencia de la mayoría de las otras células del organismo, las neuronas normales en el individuo maduro no se regeneraban, excepto las células olfatorias. Los nervios mielinados del sistema nervioso periférico también tienen la posibilidad de regenerarse a través de la utilización del neurolema[cita requerida], una capa formada de los núcleos de las células de Schwann.

Contenido

[ocultar]

[editar] Historia

Dibujo de Santiago Ramón y Cajal de las neuronas del cerebelo de una paloma (A) Célula de Purkinje, un ejemplo de neurona bipolar (B) célula granular que es multipolar.

A principios del siglo XX, Santiago Ramón y Cajal situó por vez primera las neuronas como elementos funcionales del sistema nervioso.4 Cajal propuso que actuaban como entidades discretas que, intercomunicándose, establecían una especie de red mediante conexiones especializadas o espacios.4 Esta idea es reconocida como la doctrina de la neurona, uno de los elementos centrales de la neurociencia moderna. Se opone a la defendida por Camillo Golgi, que propugnaba la continuidad de la red neuronal y negaba que fueran entes discretos interconectados. A fin de observar al microscopio la histología del sistema nervioso, Cajal empleó tinciones de plata (con sales de plata) de cortes histológicos para microscopía óptica, desarrollados por Golgi y mejorados por él mismo. Dicha técnica permitía un análisis celular muy preciso, incluso de un tejido tan denso como el cerebral.5

La neurona es la unidad estructural y funcional del sistema nervioso. Recibe los estímulos provenientes del medio ambiente, los convierte en impulsos nerviosos y los transmite a otra neurona, a una célula muscular o glandular donde producirán una respuesta.

[editar] Morfología

Una neurona típica consta de: un núcleo voluminoso central, situado en el soma; un pericarion que alberga los orgánulos celulares típicos de cualquier célula eucariota; y neuritas (esto es, generalmente un axón y varias dendritas) que emergen del pericarion.3

Infografía de un cuerpo celular del que emergen multitud de neuritas.

[editar] Núcleo

Situado en el cuerpo celular, suele ocupar una posición central y ser muy conspicuo (visible), especialmente en las neuronas pequeñas. Contiene uno o dos nucléolos prominentes, así como una cromatina dispersa, lo que da idea de la relativamente alta actividad transcripcional de este tipo celular. La envoltura nuclear, con multitud de poros nucleares, posee una lámina nuclear muy desarrollada. Entre ambos puede aparecer el cuerpo accesorio de Cajal, una estructura esférica de en torno a 1 μm de diámetro que corresponde a una acumulación de proteínas ricas en los aminoácidos arginina y tirosina.

[editar] Pericarion

Artículo principal: Pericarion

Diversos orgánulos llenan el citoplasma que rodea al núcleo. El orgánulo más notable, por estar el pericarion lleno de ribosomas libres y adheridos al retículo rugoso, es la llamada sustancia de Nissl, al microscopio óptico, se observan como grumos basófilos, y, al electrónico, como apilamientos de cisternas del retículo endoplasmático. Tal abundancia de los orgánulos relacionados en la síntesis proteica se debe a la alta tasa biosintética del pericarion.

Estos son particularmente notables en neuronas motoras somáticas, como las del ucerno anterior de la medula espinal o en ciertos núcleos de nervios craneales motores. Los cuerpos de Nissl no solamente se hallan en el pericarion sino también en las dendritas, aunque no en el axón, y es lo que permite diferenciar de dendritas y axones en el neurópilo.

El aparato de Golgi, que se descubrió originalmente en las neuronas, es un sistema muy desarrollado de vesículas aplanadas y agranulares pequeñas. Es la región donde los productos de la sustancia de Nissl posibilitan una síntesis adicional. Hay lisosomas primarios y secundarios (estos últimos, ricos en lipofuscina, pueden marginar al núcleo en individuos de edad avanzada debido a su gran aumento).6 Las mitocondrias, pequeñas y redondeadas, poseen habitualmente crestas longitudinales.

En cuanto al citoesqueleto, el pericarion es rico en microtúbulos (clásicamente, de hecho, denominados neurotúbulos, si bien son idénticos a los microtúbulos de células no neuronales) y filamentos intermedios (denominados neurofilamentos por la razón antes mencionada).7 Los neurotúbulos se relacionan con el transporte rápido de las moléculas de proteínas que se sintetizan en el cuerpo celular y que se llevan a través de las dendritas y el axón.8

[editar] Dendritas

Artículo principal: Dendrita

Las dendritas son ramificaciones que proceden del soma neuronal que consisten en proyecciones citoplasmáticas envueltas por una membrana plasmática sin envoltura de mielina. En ocasiones, poseen un contorno irregular, desarrollando espinas. Sus orgánulos y componentes característicos son: muchos microtúbulos y pocos neurofilamentos, ambos dispuestos en haces paralelos; muchas mitocondrias; grumos de Nissl, más abundantes en la zona adyacente al soma; retículo endoplasmático liso, especialmente en forma de vesículas relacionadas con la sinapsis.

[editar] Axón

Artículo principal: Axón

El axón es una prolongación del soma neuronal recubierta por una o más células de Schwann en el sistema nervioso periférico de vertebrados, con producción o no de mielina. Puede dividirse, de forma centrífuga al pericarion, en: cono axónico, segmento inicial, resto del axón.3

  • Cono axónico. Adyacente al pericarion, es muy visible en las neuronas de gran tamaño. En él se observa la progresiva desaparición de los grumos de Nissl y la abundancia de microtúbulos y neurfilamentos que, en esta zona, se organizan en haces paralelos que se proyectarán a lo largo del axón.
  • Segmento inicial. En él comienza la mielinización externa. En el citoplasma, a esa altura se detecta una zona rica en material electronodenso en continuidad con la membrana plasmática, constituido por material filamentoso y partículas densas; se asume que interviene en la generación del potencial de acción que transmitirá la señal sináptica. En cuanto al citoesqueleto, posee esta zona la organización propia del resto del axón. Los microtúbulos, ya polarizados, poseen la proteína τ9 pero no la proteína MAP-2.
  • Resto del axón. En esta sección comienzan a aparecer los nódulos de Ranvier y las sinapsis.

[editar] Función de las neuronas

Las neuronas tienen la capacidad de comunicarse con precisión, rapidez y a larga distancia con otras células, ya sean nerviosas, musculares o glandulares. A través de las neuronas se transmiten señales eléctricas denominadas impulsos nerviosos.

Estos impulsos nerviosos viajan por toda la neurona comenzando por las dendritas, y pasa por toda la neurona hasta llegar a los botones terminales, que pueden conectar con otra neurona, fibras musculares o glándulas. La conexión entre una neurona y otra se denomina sinapsis.

Las neuronas conforman e interconectan los tres componentes del sistema nervioso: sensitivo, motor e integrador o mixto; de esta manera, un estímulo que es captado en alguna región sensorial entrega cierta información que es conducida a través de las neuronas y es analizada por el componente integrador, el cual puede elaborar una respuesta, cuya señal es conducida a través de las neuronas. Dicha respuesta es ejecutada mediante una acción motora, como la contracción muscular o secreción glandular.

[editar] El impulso nervioso

Artículo principal: Impulso nervioso
A. Vista esquemática de un potencial de acción ideal, mostrando sus distintas fases. B. Registro real de un potencial de acción, normalmente deformado, comparado con el esquema debido a las técnicas electrofisiológicas utilizadas en la medición.

Las neuronas transmiten ondas de naturaleza eléctrica originadas como consecuencia de un cambio transitorio de la permeabilidad en la membrana plasmática. Su propagación se debe a la existencia de una diferencia de potencial o potencial de membrana (que surge gracias a las concentraciones distintas de iones a ambos lados de la membrana, según describe el potencial de Nernst10 ) entre la parte interna y externa de la célula (por lo general de -70 mV). La carga de una célula inactiva se mantiene en valores negativos (el interior respecto al exterior) y varía dentro de unos estrechos márgenes. Cuando el potencial de membrana de una célula excitable se despolariza más allá de un cierto umbral (de 65mV a 55mV app) la célula genera (o dispara) un potencial de acción. Un potencial de acción es un cambio muy rápido en la polaridad de la membrana de negativo a positivo y vuelta a negativo, en un ciclo que dura unos milisegundos.11

[editar] Propiedades electrofisiológicas intrínsecas

Hasta finales de los años 80 del siglo XX el dogma de la neurociencia dictaba que sólo las conexiones y los neurotransmisores liberados por las neuronas determinaban la función de una neurona. Las investigaciones realizadas por Rodolfo Llinás con sus colaboradores durante los años 80 sobre vertebrados pusieron de manifiesto que el dogma mantenido hasta entonces era erróneo. En 1988, Rodolfo Llinás presentó el nuevo punto de vista funcional sobre la neurona en su artículo "The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function"12 y que es considerado un manifiesto que marca el cambio de mentalidad en neurociencia respecto al aspecto funcional de las neuronas con más de 1250 citas en la bibliografía científica. El nuevo punto de vista funcional sobre la neurona quedo resumido en lo que hoy es conocido por la Ley de Llinás.

[editar] Neurosecreción

Las células neurosecretoras son neuronas especializadas en la secreción de sustancias que, en vez de ser vertidas en la hendidura sináptica, lo hacen en capilares sanguíneos, por lo que sus productos son transportados por la sangre hacia los tejidos diana; esto es, actúan a través de una vía endocrina.13 Esta actividad está representada a lo largo de la diversidad zoológica: se encuentra en crustáceos,14 insectos,15 equinodermos,16 vertebrados,13 etc.

[editar] Transmisión de señales entre neuronas

Un sistema nervioso procesa la información siguiendo un circuito más o menos estándar. La señal se inicia cuando una neurona sensorial recoge información. Su axón se denomina fibra aferente. Esta neurona sensorial transmite la información a otra aledaña, de modo que acceda un centro de integración del sistema nervioso del animal. Las interneuronas, situadas en dicho sistema, transportan la información a través de sinapsis. Finalmente, si debe existir respuesta, se excitan neuronas eferentes que controlan músculos, glándulas u otras estructuras anatómicas. Las neuronas aferentes y eferentes, junto con las interneuronas, constituyen el circuito neuronal.17

[editar] Velocidad de transmisión del impulso

El impulso nervioso se transmite a través de las dendritas y el axón. La velocidad de transmisión del impulso nervioso, depende fundamentalmente de la velocidad de conducción del axón, la cual depende a su vez del diámetro del axón y de la mielinización de éste. El axón lleva el impulso a una sola dirección y el impulso es transmitido de un espacio a otro. Las dendritas son las fibras nerviosas de una neurona, que reciben los impulsos provenientes desde otras neuronas. Los espacios entre un axón y una dendrita se denominan «espacio sináptico» o hendidura sináptica. En las grandes neuronas alfa de las astas anteriores de la medula espinal, las velocidades de conducción axonal pueden alcanzar hasta 120 m/s. Si consideramos que una persona normal puede llegar a medir hasta 2.25 metros de altura, al impulso eléctrico le tomaría únicamente 18.75 milisegundos en recorrer desde la punta del pie hasta el cerebro.

[editar] Clasificación

Aunque el tamaño del cuerpo celular puede ser desde 5 hasta 135 micrómetros, las prolongaciones o dendritas pueden extenderse a una distancia de más de un metro. El número, la longitud y la forma de ramificación de las dendritas brindan un método morfológico para la clasificación de las neuronas.

[editar] Según la forma y el tamaño

Célula piramidal, en verde (expresando GFP). Las células teñidas de color rojo son interneuronas GABAérgicas.

Según el tamaño de las prolongaciones, los nervios se clasifican en:3

[editar] Según la polaridad

Según el número y anatomía de sus prolongaciones, las neuronas se clasifican en:3

  • Unipolares: son aquéllas desde las que nace sólo una prolongación que se bifurca y se comporta funcionalmente como un axón salvo en sus extremos ramificados en que la rama periférica reciben señales y funcionan como dendritas y transmiten el impulso sin que este pase por el soma neuronal. Son típicas de los ganglios de invertebrados y de la retina.
  • Bipolares: poseen un cuerpo celular alargado y de un extremo parte una dendrita y del otro el axón (solo puede haber uno por neurona). El núcleo de este tipo de neurona se encuentra ubicado en el centro de ésta, por lo que puede enviar señales hacia ambos polos de la misma. Ejemplos de estas neuronas se hallan en las células bipolares de la retina (conos y bastones), del ganglio coclear y vestibular, estos ganglios son especializados de la recepción de las ondas auditivas y del equilibrio.
  • Multipolares: tienen una gran cantidad de dendritas que nacen del cuerpo celular. Ese tipo de células son la clásica neurona con prolongaciones pequeñas (dendritas) y una prolongación larga o axón. Representan la mayoría de las neuronas. Dentro de las multipolares, distinguimos entre las que son de tipo Golgi I, de axón largo, y las de tipo Golgi II, de axón corto. Las neuronas de proyección son del primer tipo, y las neuronas locales o interneuronas del segundo.
  • Pseudounipolares (monopolar): son aquéllas en las cuales el cuerpo celular tiene una sola dendrita o neurita, que se divide a corta distancia del cuerpo celular en dos ramas, motivo por cual también se les denomina pseudounipolares (pseudos en griego significa "falso"), una que se dirige hacia una estructura periférica y otra que ingresa en el sistema nervioso central. Se hallan ejemplos de esta forma de neurona en el ganglio de la raíz posterior.
  • Anaxónicas: son pequeñas. No se distinguen las dendritas de los axones. Se encuentran en el cerebro y órganos especiales de los sentidos.

[editar] Según las características de las neuritas

De acuerdo a la naturaleza del axón y de las dendritas, clasificamos a las neuronas en:3

  • Axón muy largo o Golgi de tipo I. El axón se ramifica lejos del pericarion. Con axones de hasta 1 m.
  • Axón corto o Golgi de tipo II. El axón se ramifica junto al soma celular.
  • Sin axón definido. Como las células amacrinas de la retina.
  • Isodendríticas. Con dendritas rectilíneas que se ramifican de modo que las ramas hijas son más largas que las madres.
  • Idiodendríticas. Con las dendritas organizadas dependiendo del tipo neuronal; por ejemplo, como las células de Purkinje del cerebelo.
  • Alodendríticas. Intermedias entre los dos tipos anteriores.

[editar] Según el mediador químico

Las neuronas pueden clasificarse, según el mediador químico, en:18

[editar] Según la función

Las neuronas pueden ser sensoriales, motoras o interneuronas:

  • Motoras: Son las encargadas de producir la contracción de la musculatura.
  • Sensoriales: Reciben información del exterior, ej. Tacto, gusto, visión y las trasladan al sistema nervioso central.
  • Interneuronas: Se encargan de conectar entre las dos diferentes neuronas.

[editar] Doctrina de la neurona

Artículo principal: Doctrina de la neurona
Micrografía de neuronas del giro dentado de un paciente con epilepsia teñidas mediante la tinción de Golgi, empleada en su momento por Golgi y por Cajal.

La doctrina de la neurona, establecida por Santiago Ramón y Cajal a finales del siglo XIX, es el modelo aceptado hoy en neurofisiología. Consiste en aceptar que la base de la función neurológica radica en las neuronas como entidades discretas, cuya interacción, mediada por sinapsis, conduce a la aparición de respuestas complejas. Cajal no solo postuló este principio, sino que lo extendió hacia una «ley de la polarización dinámica», que propugna la transmisión unidireccional de información (esto es, en un sólo sentido, de las dendritas hacia los axones).19 No obstante, esta ley no siempre se cumple. Por ejemplo, las células gliales pueden intervenir en el procesamiento de información,20 e, incluso, las efapsis o sinapsis eléctricas, mucho más abundantes de lo que se creía,21 presentan una transmisión de información directa de citoplasma a citoplasma. Más aún: las dendritas pueden dirigir una señal sináptica de forma centrífuga al soma neuronal, lo que representa una transmisión en el sentido opuesto al postulado,22 de modo que sean los axones los que reciban de información (aferencia).

[editar] Redes neuronales

Artículo principal: Red neuronal biológica

Una red neuronal se define como una población de neuronas físicamente interconectadas o un grupo de neuronas aisladas que reciben señales que procesan a la manera de un circuito reconocible. La comunicación entre neuronas, que implica un proceso electroquímico,10 implica que, una vez que una neurona es excitada a partir de cierto umbral, ésta se despolariza transmitiendo a través de su axón una señal que excita a neuronas aledañas, y así sucesivamente. El sustento de la capacidad del sistema nervioso, por tanto, radica en dichas conexiones. En oposición a la red neuronal, se habla de circuito neuronal cuando se hace mención a neuronas que se controlan dando lugar a una retroalimentación («feedback»), como define la cibernética.

[editar] Cerebro y neuronas

El número de neuronas en el cerebro varía drásticamente según la especie estudiada.23 Se estima que cada cerebro humano posee en torno a 1011 neuronas: es decir, unos cien mil millones. No obstante, Caenorhabditis elegans, un gusano nematodo muy empleado como animal modelo, posee sólo 302.;24 y la mosca de la fruta, Drosophila melanogaster, unas 300.000, que bastan para permitirle exhibir conductas complejas.25 La fácil manipulación en el laboratorio de estas especies, cuyo ciclo de vida es muy corto y cuyas condiciones de cultivo poco exigentes, permiten a los investigadores científicos emplearlas para dilucidar el funcionamiento neuronal, puesto que el mecanismo básico de la actividad neuronal es común al de nuestra especie.11

[editar] Evolución

En los celentéreos más primitivos, los hidrozoos, se ha descrito una actividad neural no originada de neuronas ni músculos, sino más bien de una comunicación de células epiteliales que han sido llamadas neuroides ya que aun siendo epitelio tienen características de neuronas como lo es el percibir y transmitir estímulos. De igual manera actos motores de ciertos pólipos como lo es cerrar y mover sus tentáculos y ventosas provienen de potenciales eléctricos que se propagan de una célula a otra en la capa epitelial de cefálico a caudal.

Además, en los embriones vertebrados se puede observar la neurulación, que no es otra cosa que la conversión y migración de células epiteliales a células neurales hacia el interior del producto. Todo esto hace pensar que las células nerviosas se diferenciaron por una transformación gradual de células de revestimiento, que en los sistemas primitivos desempeñaron una función de iniciadoras de actividad transmisible a células adyacentes. Se supone que la neurona actual solo difiere de estas primeras por la emisión de su largo filamento axial para comunicarse con células distantes.26

[editar] Redes neuronales artificiales

Artículo principal: Red neuronal artificial

El conocimiento de las redes neuronales biológicas ha dado lugar a un diseño empleado en inteligencia artificial. Estas redes funcionan porque cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones: una función de propagación que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión; una función de activación, que modifica a la anterior y que puede no existir, siendo en este caso la salida la misma función de propagación; y una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas.27

[editar] Véase también

[editar] Referencias

  1. «Henry George Liddell, Robert Scott, A Greek-English Lexicon, νεῦρον».
  2. Myriam Cayre, Jordane Malaterre, Sophie Scotto-Lomassese, Colette Strambi and Alain Strambi. The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Volume 132, Issue 1, May 2002, Pages 1-15
  3. a b c d e f Paniagua, R.; Nistal, M.; Sesma, P.; Álvarez-Uría, M.; Fraile, B.; Anadón, R. y José Sáez, F. (2002). Citología e histología vegetal y animal. McGraw-Hill Interamericana de España, S.A.U.. ISBN 84-486-0436-9.
  4. a b López-Muñoz, F; Boya, J., Alamo, C. (16 October 2006). «Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal». Brain Research Bulletin 70:  pp. 391–405. doi:10.1016/j.brainresbull.2006.07.010. PMID 17027775.
  5. Grant, Gunnar (9 January 2007 (online)). «How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal». Brain Research Reviews 55:  pp. 490. doi:10.1016/j.brainresrev.2006.11.004. PMID 17027775.
  6. Jeffrey N. KellerEdgardo Dimayugab, Qinghua Chena, Jeffrey Thorpea, Jillian Geeb and Qunxing Ding. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain The International Journal of Biochemistry & Cell Biology. Volume 36, Issue 12, December 2004, Pages 2376-2391
  7. I. P. Johnson. [Morphological Peculiarities of the Neuron http://www.springerlink.com/content/mukh4n2550427866/]. Brain Damage and Repair (From Molecular Research to Clinical Therapy)
  8. Adel K. Afifi. Neuroanatomía Funcional. ISBN 970-10-5504-7
  9. M Goedert, M G Spillantini, and R A Crowther. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proc Natl Acad Sci U S A. 1992 March 1; 89(5): 1983–1987.
  10. a b Cromer, A.H. (1996). Física para ciencias de la vida. Reverté ediciones. ISBN para España 84-291-1808-X.
  11. a b Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9
  12. Llinás, Rodolfo (1988). «The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function». Science 242:  p. 1654-1664.
  13. a b Kardong, K. V (1999). Vertebrados. Anatomía comparada, función, evolución. McGraw-Hill Interamericana de España, S.A.U.. ISBN 84-486-0261-7.
  14. Dorothy E. Bliss, James B. Durand and John H. Welsh.Neurosecretory systems in decapod Crustacea Cell and Tissue Research. Volume 39, Number 5 / septiembre de 1954.
  15. T A Miller. [Neurosecretion and the Control of Visceral Organs in Insects http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.en.20.010175.001025] Annual Review of Entomology Vol. 20: 133-149 (Volume publication date January 1975)
  16. COBB J. L. S.. Neurohumors and neurosecretion in echinoderms: a review. Comparative biochemistry and physiology. C. Comparative pharmacology.
  17. Randall, D.; Burggren, W. et French, K. (1998). Eckert Fisiología animal (4ª edición). ISBN 84-486-0200-5.
  18. William F. Ganong: Review of Medical Physiology, 22nd Edition
  19. Sabbatini R.M.E. April-July 2003. Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine, 17. Consultado el 19 de marzo de 2007.
  20. Witcher M, Kirov S, Harris K (2007). «Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus.». Glia 55 (1):  pp. 13–23. doi:10.1002/glia.20415. PMID 17001633.
  21. Connors B, Long M (2004). «Electrical synapses in the mammalian brain.». Annu Rev Neurosci 27:  pp. 393–418. doi:10.1146/annurev.neuro.26.041002.131128. PMID 15217338.
  22. Djurisic M, Antic S, Chen W, Zecevic D (2004). «Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones.». J Neurosci 24 (30):  pp. 6703–14. doi:10.1523/JNEUROSCI.0307-04.2004. PMID 15282273.
  23. Williams, R and Herrup, K (2001). "The Control of Neuron Number." Publicado en The Annual Review of Neuroscience 11:423–453 (1988). Last revised Sept 28, 2001. Consultado de http://www.nervenet.org/papers/NUMBER_REV_1988.html on May 12, 2007.
  24. Chris Li, Kyuhyung Kim and Laura S. Nelson. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans Brain Research, Volume 848, Issues 1-2, 27 November 1999, Pages 26-34
  25. Paul Patrick Gordon Bateson, Peter H. Klopfer, Nicholas S. Thompson (1993): Perspectives in Ethology. Springer. ISBN:0306443988.
  26. http://books.google.com/books?id=e-Mja7NYJj0C&pg=PA23&lpg=PA23&dq=neuronas+primitivas&source=bl&ots=DP1i8b403H&sig=hGkMp1AF6UjLgT5L0zcLtwzpFE0&hl=en&ei=GH5_S9y_LsWWtgfow6niBg&sa=X&oi=book_result&ct=result&resnum=3&ved=0CEkQ6AEwAg#v=onepage&q=&f=false
  27. Gurney, K. (1997) An Introduction to Neural Networks London: Routledge. ISBN 1-85728-673-1 (hardback) or ISBN 1-85728-503-4 (paperback)

[editar] Enlaces externos

FILOSOFÍA24: SISTEMA NERVIOSO. El sistema nervioso es una red de tejidos de origen ectodérmico3 4 5 en los animales diblásticos y triblásticos cuya unidad básica son las neuronas. Su principal función es la de captar y procesar rápidamente las señales ejerciendo control y coordinación sobre los demás órganos para lograr una oportuna y eficaz interacción con el medio ambiente cambiante.

Sistema nervioso

Sistema nervioso
Sistema nervioso.PNG
Sistema nervioso de distintos animales.
Función Coordinación rápida y efectiva de todas las funciones corporales para responder de forma apropiada a los cambiantes estímulos del medio ambiente.1
Estructuras básicas Histológicas
   Neurona
   Neuroglía

Por la función refleja2
   Sistema aferente
   Sistema de asociación
   Sistema eferente

Anatómicas2
   SN central
   SN periférico

Según su función2
   SN autónomo
   SN somático

El sistema nervioso es una red de tejidos de origen ectodérmico3 4 5 en los animales diblásticos y triblásticos cuya unidad básica son las neuronas. Su principal función es la de captar y procesar rápidamente las señales ejerciendo control y coordinación sobre los demás órganos para lograr una oportuna y eficaz interacción con el medio ambiente cambiante.1 Esta rapidez de respuestas que proporciona la presencia del sistema nervioso diferencia a la mayoría de los animales de otros seres pluricelulares de respuesta motil lenta que no lo poseen los vegetales, hongos, mohos o algas.

Cabe mencionar que también existen grupos de animales como los poríferos,6 7 8 placozoos y mesozoos que no tienen sistema nervioso porque sus tejidos no alcanzan la misma diferenciación que consiguen los demás animales ya sea porque sus dimensiones o estilos de vida son simples, arcaicos, de bajos requerimientos o de tipo parasitario.

Las neuronas son células especializadas,9 cuya función es coordinar las acciones de los animales10 por medio de señales químicas y eléctricas enviadas de un extremo al otro del organismo.

Para su estudio desde el punto de vista anatómico el sistema nervioso se ha dividido en central y periférico, sin embargo para profundizar su conocimiento desde el punto de vista funcional suele dividirse en somático y autónomo.2

Otra manera de estudiarlo y desde un punto de vista más incluyente, abarcando la mayoría de animales, es siguiendo la estructura funcional de los reflejos estableciéndose la división entre sistema nervioso sensitivo o aferente, encargado de incorporar la información desde los receptores, en sistema de asociación,nota 1 encargado de almacenar e integrar la información, y en sistema motor o eferente, que lleva la información de salida hacia los efectores.2

Contenido

[ocultar]

[editar] Consideraciones generales

El arco reflejo es la unidad básica de la actividad nerviosa integrada11 y podría considerarse como el circuito primordial del cual partieron el resto de las estructuras nerviosas. Este circuito pasó de estar constituido por una sola neurona multifuncional en los diblásticos12 a dos tipos de neuronas en el resto de los animales llamadas aferentes y eferentes. En la medida que se fueron agregando intermediarios entre estos dos grupos de neuronas con el paso del tiempo evolutivo, como interneuronas y circuitos de mayor plasticidad,nota 2 el sistema nervioso fue mostrando un fenómeno de concentración en regiones estratégicas dando pie a la formación del sistema nervioso central, siendo la cefalización el rasgo más acabado de este fenómeno.

Para optimizar la transmisión de señales existen medidas como la redundancia, que consiste en la creación de vías alternas que llevan parte de la misma información garantizando su llegada a pesar de daños que puedan ocurrir. La mielinización de los axones en la mayoría de los vertebrados y en algunos invertebrados como anélidos y crustáceos es otra medida de optimización. Este tipo de recubrimiento incrementa la rapidez de las señales y disminuye el calibre de los axones ahorrando espacio y energía.

Otra característica importante es la presencia de metamerización del sistema nervioso, es decir, aquella condición donde se observa una subdivisión de las estructuras corporales en unidades que se repiten con características determinadas. Los tres grupos que principalmente muestran esta cualidad son los artrópodos, anélidos y cordados.13

Filo Superfilo Cambios en la gastrula   Sistema nervioso     Centralización     Metamerización     Cefalización     Mielinización  
Ctenóforos Diblásticos   Especialización de la CGVnota 3   Difuso No No 0 No
Cnidarios Diblásticos   Especialización de la CGV   Difuso/Cicloneuro No/Si No 0 No
Platelmintos Protóstomos platizoos   Especialización de la CGV   Hiponeuro Si No + No
Nematodos Protóstomos ecdisozoos Gastrorrafia Hiponeuro Si No + No
Artrópodos Protóstomos ecdisozoos Gastrorrafia Hiponeuro Si Si +++ Crustáceos‎14
Moluscos Protóstomos lofotrocozos Gastrorrafia Hiponeuro Si No ++++ No
Anélidos Protóstomos lofotrocozos Gastrorrafia Hiponeuro Si Si ++ Oligoquetos14
Poliquetos14
Equinodermos Deuteróstomos Isoquilia Cicloneuro Si No 0 No
Hemicordados Deuteróstomos Isoquilia Cicloneuro Si No + No
Cordados Deuteróstomos Nototenia Epineuro Si Si +++++ Vertebrados14

[editar] Neurohistología

El sistema nervioso se compone de varios elementos celulares como tejidos de sostén o mantenimiento llamados neuroglía,15 un sistema vascular especializado y las neuronas3 que son células que se encuentran conectadas entre sí de manera compleja y que tienen la propiedad de generar, propagar, codificar y conducir señales por medio de gradientes electroquímicos (electrolitos) a nivel de membrana axonal y de neurotransmisores a nivel de sinapsis y receptores.

[editar] Células gliales

Artículo principal: Neuroglia
Canal central de la médula espinal, se observan células ependimarias y neurogliales.

Las células gliales (conocidas también genéricamente como glía o neuroglia) son células nodriza del sistema nervioso que desempeñan, de forma principal, la función de soporte y protección de las neuronas. En los humanos se clasifican según su localización o por su morfología y función. Las diversas células de la neuroglia constituyen más de la mitad del volumen del sistema nervioso de los vertebrados.15 Las neuronas no pueden funcionar en ausencia de las céluas gliales.15

[editar] Clasificación topográfica

Según su ubicación dentro del sistema nervioso ya sea central o periférico, las células gliales se clasifican en dos grandes grupos. Las células que constituyen la glía central son los astrocitos, oligodendrocitos, células ependimarias y las células de la microglía, y suelen encontrarse en el cerebro, cerebelo, tronco cerebral y médula espinal. Las células que constituyen la glía periférica son las células de Schwann, células capsulares y las células de Müller. Normalmente se encuentran a lo largo de todo el sistema nervioso periférico.

[editar] Clasificación morfo-funcional

Por su morfología o función, entre las células gliales se distinguen las células macrogliales (astrocitos, oligodendrocitos ), "las células microgliales" (entre el 10 y el 15% de la glía) y las "células ependimarias".

[editar] Neuronas

Artículo principal: Neuronas
Diagrama básico de una neurona

Las partes anatómicas de estas células se divide en cuerpo celular neuronal o soma, axones o cilindroejes y las dendritas.

[editar] Clasificación morfológica

En base a la división morfológica entre las distintas partes anatómicas de las neuronas y sus distintas formas de organización se clasifican en cuatro variedades:

  • Unipolares, son células con una sola proyección que parte del soma, son raras en los vertebrados.
  • Bipolares, con dos proyecciones que salen del soma, en los humanos se encuentran en el epitelio olfativo y ganglios vestibular y coclear.
  • Seudounipolares, con una sola proyección pero que se subdivide posteriormente en una rama periférica y otra central, son características en la mayor parte de células de los ganglios sensitivos humanos.
  • Multipolares, son neuronas con múltiples proyecciones dendríticas y una sola proyección axonal, son características de las neuronas motoras.

[editar] Clasificación fisiologica

Las neuronas se clasifican también en tres grupos generales según su función:

  • Sensitivas o aferentes, localizadas normalmente en el sistema nervioso periférico (ganglios sensitivos) encargadas de la recepción de muy diversos tipos de estímulos tanto internos como externos. Esta adquisición de señales queda a cargo de una amplia variedad de receptores:
    • Externorreceptores, encargados de recoger los estímulos externos o del medio ambiente.
      • Nocicepción. Terminaciones libres encargadas de recoger la información de daño tisular.
      • Termorreceptores. Sensibles a radiación calórica o infrarroja.
      • Fotorreceptores. Son sensibles a la luz, se encuentran localizados en los ojos.
      • Quimiorreceptores. Son las que captan sustancias químicas como el gusto (líquidos-sólidos) y olfato (gaseosos).
      • Mecanorreceptores. Son sensibles al roce, presión, sonido y la gravedad, comprenden al tacto, oído, línea lateral de los peces, estatocistos y reorreceptores.
      • Galvanorreceptores. Sensibles a corrientes eléctricas o campos eléctricos.
    • lnternorreceptores, encargados de recoger los estímulos internos o del cuerpo:
      • Propiocepción, los husos musculares y terminaciones nerviosas que encargan de recoger información para el organismo sobre la posición de los músculos y tendones.
      • Nocicepción. Terminaciones libres encargadas de recoger la información de daño tisular.
      • Quimiorreceptores. En relación con las funciones de regulación hormonal, hambre, sensación de sed, entre otros.
  • Motoras o eferentes, localizadas normalmente en el sistema nervioso central se encargan de enviar las señales de mando enviándolas a otras neuronas, músculos o glándulas.
  • Interneuronas, localizadas normalmente dentro del sistema nervioso central se encargan de crear conexiones o redes entre los distintos tipos de neuronas.

[editar] Señales neuronales

Estas señales se propagan a través de propiedades de su membrana plasmática, al igual que muchas células, pero en este caso está modificada para tener la capacidad de ser una Excitabilidad neuronal membrana excitable en sentido unidireccional controlando el movimiento a través de ella de iones disueltos desde sus proximidades para generar lo que se conoce como potencial de acción.

Por medio de sinapsis las neuronas se conectan entre sí, con los músculos Unión neuromuscular|placa neuromuscular, con glándulas y con pequeños vasos sanguíneos. Utilizan en la mayoría de los casos neurotransmisor es enviando una gran variedad de señales dentro del tejido nervioso y con el resto de los tejidos, coordinando así múltiples funciones.

[editar] Sistema nervioso humano

Anatómicamente, el sistema nervioso de los seres humanos se agrupa en distintos órganos, los cuales conforman estaciones por donde pasan las vías neurales. Así, con fines de estudio, se pueden agrupar estos órganos, según su ubicación, en dos partes: sistema nervioso central y sistema nervioso periférico.16 17

Sistema nervioso central. 1-Cerebro 2-Sistema nervioso central (cerebro y médula espinal) 3-Médula espinal

[editar] Sistema nervioso central

Artículo principal: Sistema nervioso central
Cerebro es la parte más voluminosa. Está dividido en dos hemisferios, uno derecho y otro izquierdo, separados por la cisura interhemisférica y comunicados mediante el Cuerpo calloso. La superficie se denomina corteza cerebral y está formada por replegamientos denominados circunvoluciones constituidas de sustancia gris. Subyacente a la misma se encuentra la sustancia blanca. En zonas profundas existen áreas de sustancia gris conformando núcleos como el tálamo, el núcleo caudado o el hipotálamo.16 Cerebelo está en la parte inferior y posterior del encéfalo, alojado en la fosa cerebral posterior junto al tronco del encéfalo.16 Tronco del encéfalo compuesto por el mesencéfalo, la protuberancia anular y el bulbo raquídeo. Conecta el cerebro con la médula espinal.16
  • La médula espinal es una prolongación del encéfalo, como si fuese un cordón que se extiende por el interior de la columna vertebral. En ella la sustancia gris se encuentra en el interior y la blanca en el exterior.16
Sistema nervioso central Encéfalo Prosencéfalo Telencéfalo Rinencefalo, amígdala, hipocampo, neocórtex, ventrículos laterales
Diencéfalo Epitálamo, tálamo, hipotálamo, subtálamo, pituitaria, pineal, tercer ventrículo
Tallo cerebral Mesencéfalo Téctum, pedúnculo cerebral, pretectum, acueducto de Silvio
Rombencéfalo Metencéfalo Puente troncoencefálico, cerebelo
Mielencéfalo Médula oblonga
Médula espinal
Imagen que muestra en corte sagital las estructuras que dan origen a el (3) nervio motor ocular común, (4) nervio patético, (5) nervio trigémino, (6) nervio abducens externo, (7) nervio facial, (8) nervio auditivo, (9) nervio glosofaríngeo, (10) nervio neumogástrico o vago, (11) nervio espinal y (12) nervio hipogloso.
El sistema nervioso humano. En rojo el Sistema nervioso central y en azul el Sistema nervioso periférico

[editar] Sistema nervioso periférico

Artículo principal: Sistema nervioso periférico

[editar] Clasificación funcional

Una división menos anatómica, pero mucho más funcional, es la que divide al sistema nervioso de acuerdo al rol que cumplen las diferentes vías neurales, sin importar si éstas recorren parte del sistema nervioso central o el periférico:

  • El sistema nervioso somático, también llamado sistema nervioso de la vida de relación, está formado por el conjunto de neuronas que regulan las funciones voluntarias o conscientes en el organismo (p.e. movimiento muscular, tacto).
  • El sistema nervioso autónomo, también llamado sistema nervioso vegetativo o sistema nervioso visceral, está formado por el conjunto de neuronas que regulan las funciones involuntarias o inconscientes en el organismo (p.e. movimiento intestinal, sensibilidad visceral). A su vez el sistema vegetativo se clasifica en simpático y parasimpático, sistemas que tienen funciones en su mayoría antagónicas.
    En color azul se muestra la inervación parasimpática, en color rojo la inervación simpática.
    • El sistema nervioso parasimpático al ser un sistema de reposo da prioridad a la activación de las funciones peristálticas y secretoras del aparato digestivo y urinario al mismo tiempo que propicia la relajación de esfínteres para el desalojo de las excretas y orina; también provoca la broncoconstricción y secreción respiratoria; fomenta la vasodilatación para redistribuir el riego sanguíneo a las vísceras y favorecer la excitación sexual; y produce miosis al contraer el esfínter del iris y la de acomodación del ojo a la visión próxima al contraer el músculo ciliar.
      En cambio este sistema inhibe las funciones encargadas del comportamiento de huida propiciando la disminución de la frecuencia como de la fuerza de la contracción cardiaca.
      El sistema parasimpático tiende a ignorar el patrón de metamerización corporal inervando la mayor parte del cuerpo por medio del nervio vago, que es emitido desde la cabeza (bulbo raquídeo). Los nervios que se encargan de inervar la misma cabeza son emitidos desde el mesencéfalo y bulbo. Los nervios que se encargan de inervar los segmentos digestivo-urinarios más distales y órganos sexuales son emitidos desde las secciones medulares S2 a S4.
    • El sistema nervioso simpático al ser un sistema del comportamiento de huida o escape da prioridad a la aceleración y fuerza de contracción cardiaca, estimula la piloerección y sudoración, favorece y facilita los mecanismos de activación del sistema nervioso somático para la contracción muscular voluntaria oportuna, provoca la broncodilatación de vías respiratorias para favorecer la rápida oxigenación, propicia la vasoconstriccion redirigiendo el riego sanguíneo a músculos, corazón y sistema nervioso, provoca la midriasis para la mejor visualización del entorno, y estimula las glándulas suprarrenales para la síntesis y descarga adrenérgica.
      En cambio este inhibe las funciones encargadas del reposo como la peristalsis intestinal a la vez que aumenta el tono de los esfínteres urinarios y digestivos, todo esto para evitar el desalojo de excretas. En los machos da fin a la excitación sexual mediante el proceso de la eyaculación.
      El sistema simpático sigue el patrón de metamerización corporal inervando la mayor parte del cuerpo, incluyendo a la cabeza, por medio de los segmentos medulares T1 a L2.

Cabe mencionar que las neuronas de ambos sistemas (somático y autónomo) pueden llegar o salir de los mismos órganos si es que éstos tienen funciones voluntarias e involuntarias (y, de hecho, estos órganos son la mayoría). En algunos textos se considera que el sistema nervioso autónomo es una subdivisión del sistema nervioso periférico, pero esto es incorrecto ya que, en su recorrido, algunas neuronas del sistema nervioso autónomo pueden pasar tanto por el sistema nervioso central como por el periférico, lo cual ocurre también en el sistema nervioso somático. La división entre sistema nervioso central y periférico tiene solamente fines anatómicos.

[editar] Neurofarmacología

Véase también: Farmacología

Los principales grupos de medicamentos utilizados en el sistema nervioso son:

  • Analgésicos
  • Somníferos
  • Ansiolíticos
  • Antidepresivos
  • Antipsicoticos
  • Anticonvulsivos
  • Antiparkinsionanos
  • Antimigrañosos
  • Antieméticos

[editar] Sistema nervioso en los animales

Diagrama que muestra en color amarillo mostaza la organización del sistema nervioso en los animales.

Aunque las esponjas carecen de sistema nervioso6 se ha descubierto que estas ya contaban con los ladrillos genéticos que más tarde dieron lugar al mismo.7 Es decir, muchos de los componentes genéticos que dan lugar a las sinapsis nerviosas están presentes en las esponjas, esto tras la evidencia demostrada por la secuenciación del genoma de la esponja Amphimedon queenslandica.7 18

Se cree que la primera neurona surgió durante el período Ediacárico en animales diblásticos como los cnidarios.18

Por otro lado un estudio genético realizado por Casey Dunn en el año 2008 se considera en un nodo a los triblásticos y en otro nodo a cnidarios y poríferos dentro de un gran grupo hermano de los ctenóforos8 de forma que durante la evolución las esponjas mostraron una serie de reversiones hacia la simplicidad, lo que implicaría que el sistema nervioso se inventó una sola vez si el antepasado metazoo común fue más complejo o hasta en tres ocasiones si ese antepasado haya sido más simple en una suerte de convergencia evolutiva entre ctenóforos, cnidarios y triblásticos.19

En los animales triblásticos o bilaterales, un grupo monofilético, existen dos tipos de planes corporales llamados protóstomos y deuteróstomos que poseen a su vez tres tipos de disposiciones del sistema nervioso siendo éstos los cicloneuros, los hiponeuros y los epineuros.20 21 22

[editar] Animales diblásticos

Los animales diblásticos o radiados, una agrupación parafilética que engloba tanto cnidarios como a ctenóforos, normalmente cuentan con una red de plexos subectodérmicos sin un centro nervioso aparente, pero algunas especies ya presentan condensados nerviosos en un fenómeno que se entiende como el primer intento evolutivo para conformar un sistema nervioso central.

[editar] Cnidarios

La organización básica del sistema nervioso en los cnidarios es una red nerviosa difusa pero en algunas especies se muestran condensados longitudinales, como el "axón gigante" en el tallo de algunos sifonóforos, mientras que otros muestran condensados circulares como los anillos en las hidromedusas semejando distribuciones vistas en los cicloneuros. En estas, las neuronas fotorreceptoras del ocelo se encuentran en la base de los tentáculos marginales y son inervadas por tractos nerviosos del anillo nervioso externo en donde se integra y transmite la información hacia las neuronas motoras del anillo nervioso interno.23 Otros órganos sensoriales importantes son los estatocistos, que contienen estructuras calcáreas inervadas por neuronas ciliadas que le rodean conectadas a la red neuronal difusa. Los estatocistos mediante una función de marcapasos coordinan las contracciones rítmicas del comportamiento natatorio.23 En los escifozoos tanto quimiorreceptores, ocelos y estatocistos se encuentran en un órgano muy desarrollado llamado ropalia, muy complejo en los cubozoos.

El arco reflejo en los cnidarios se encuentra integrado por células multifuncionales que juegan tanto un papel sensorio-motor como el de interneuronas, sin embargo también existen células que tienen una u otra función por separado como las células sensoriales y ganglionares, que son ciliadas, y por otro lado las células epitelio-musculares.12

[editar] Ctenóforos

Los ctenóforos cuentan con una red de plexos que tienden a condensarse en forma de anillo entorno a la región bucal así como estructuras tales como las hileras de peines, faringe, tentáculos (si existen) y el complejo sensorial alejado de la región bucal.24

El órgano sensorial más característico es el órgano aboral colocado en el extremo opuesto a la boca. Su componente principal es el estatocisto, un sensor del equilibrio que consiste en un estatolito que es una partícula sólida apoyada en cuatro ramilletes de los cilios, llamados "equilibradores", que vienen dando el sentido de orientación. El Estatocisto está protegido por una cúpula transparente de cilios largos e inmóviles.24

Para la fotorrecepción se cree que poseen láminas que están compuestas de cuatro grupos radiales compuestos de membranas de doce cilios cada una en un patrón de 9+0 (en contraposición al patrón 9+2 visto en cilios no fotorreceptores). En algunas especies, en lugar de poseer microvellosidades en los cilios, los cilios se convierten en placas de forma similar a los receptores en algunos moluscos y vertebrados. Sin embargo es motivo de controversia si estos detectan o no la luz.25

[editar] Animales protóstomos

Los animales protóstomos, que son triblásticos, como los platelmintos, nemátodos, moluscos, anélidos y artrópodos cuentan con un sistema nervioso hiponeuro, es decir es un sistema formado por ganglios cerebrales y cordones nerviosos ventrales.21 Los ganglios que forman el cerebro se sitúan alrededor del esófago, con conectivos periesofágicos que los unen a las cadenas nerviosas que recorren ventralmente el cuerpo del animal, en posición inferior respecto al tubo digestivo. Tal modelo de plan corporal queda dispuesto de esa forma cuando en la gástrula acontece un proceso embriológico llamado gastrorrafia.20

[editar] Platelmintos

Aunque ya presentan las primeras características del sistema nervioso hiponeuro este aun es difuso. Presentan ya un mayor conglomerado de células nerviosas en la región anterior dando el primer indicio de cefalización en el reino animal. Estos ganglios cerebroides se continúan con los cordones nerviosos característicos de los hiponeuros llamados cadenas ganglionares de las que a su vez parten ramas formando una red ganglionar (patrón en escalera). Asimismo en la región anterior suelen contar con la presencia de fotorreceptores llamados ocelos.

[editar] Nematodos

En los gusanos redondos (ecdisozoos no segmentados) o nematodos el sistema nervioso generalmente consta de un anillo nervioso perifaríngeo de donde parten de dos a seis cordones laterales, un cordón ventral y otro dorsal.

Diagrama anatómico de un anélido: En color gris se puede apreciar un ganglio nervioso correspondiente a un metámero (11) ventral al sistema digestivo (1 y 2).

[editar] Anélidos

En los gusanos segmentados (lofotrocozos metaméricos) o anélidos los ganglios cerebroides son más desarrollados que el de los platelmintos y nematodos.

En la lombriz de tierra el sistema nervioso se encuentra formado por un par de ganglios cerebroides reunidos en torno a la faringe a la altura del tercer segmento y funcionan como un cerebro. De este centro parten nervios a cada lado de la faringe fundiéndose por debajo del tubo digestivo, así se forma un ganglio subesofágico del cual parte un cordón nervioso ventral emitiendo colaterales en su recorrido a la parte superior del cuerpo para controlar los músculos de cada segmento.

[editar] Artrópodos

Son animales ecdisozoos metaméricos en donde cada segmento aparece un par de ganglios, de posición más o menos ventrolateral, con los dos ganglios de un par soldados o unidos por una comisura transversal y los de pares consecutivos unidos por nervios conectivos. En los artrópodos el sistema nervioso central posee una estructura caracterizada por dos cordones nerviosos longitudinales que recorren la parte ventral del cuerpo, con un par de ganglios por metámero unidos transversalmente por comisuras; no obstante, se producen procesos de concentración de ganglios debidos a la formación de tagmas.

Sistema nervioso de insectos.
[editar] Cerebro o sincerebro

Normalmente está formado por tres pares de ganglios que se asocian, correspondientes al procéfalon. Se pueden diferenciar tres regiones:

  • Protocerebro. Es el resutado de la fusión entre el ganglio impar del arquicerebro, dependiente del acron, y del par de ganglios del prosocerebro; es preoral. El protocerebro posee las estructuras relacionadas con los ojo compuestos, ocelos y el sistema endocrino:
    • Lóbulos prefrontales. Es una amplia región de la zona media del protocerebro donde se diferencian grupos de neuronas que constituyen la pars intercerrebralis; están relacionados con los ocelos y con el complejo endocrino. También se diferencia el cuerpo central y los cuerpos pedunculados o fungiformes. Estos dos centros son de asociación, están muy desarrollados en los insectos sociales. Van a regir en ellos la conducta de la colonia y el gregarismo de la misma.
    • Lóbulos ópticos. Inervan los ojos compuestos, y en ellos radica la visión. Están muy desarrollados en animales con ojos complejos como hexápodos o crustáceos. Se diferencian tres centros:
      • Lámina externa
      • Médula externa
      • Médula interna
Éstos están relacionados entre sí por quiasmas.
  • Deutocerebro. Resultado de la fusión de un par de ganglios; preoral. Del deutocerebro parten nervios que inervan el primer par de antenas (anténulas) de crustáceos y la antenas de hexápodos y miriápodos. En esos nervios hay que diferenciar dos ramas, la motora y la sensitiva. Además existen grupos de neuronas en los que residen centros de asociación con función olfativa y gustativa. Esos centros también se presentan en el tritocerebro. Los quelicerados carecen de deutocerebro; unos autores opinan que está atrofiado, mientras que otros creen que nunca lo han tenido.
  • Tritocerebro. Resultado de la fusión de un par de ganglios; en origen es postoral. El tritocerebro inerva el segundo par de antenas de crustáceos, y en hexápodos y miriápodos, el segmento intercalar o premandibular, carente de apéndices. En los quelicerados inerva los quelíceros. De él parten nervios que lo relacionan con el sistema nervioso simpático o vegetativo (en el caso de los hexápodos, con el denominado ganglio frontal). Además del tritocerbro parte un conectivo periesofágico que se une al primer par de ganglios de la cadena nerviosa ganglionar ventral, y una comisura subesofágica que une los dos ganglios tritocerebrales entre sí.

En el protocerebro y deutocerebro, no se diferencian comisuras ni conectivos. El tritocerebro está formado por un par de ganglios que se unen a los anteriores en las cabezas denominadas tritocefálicas, perdiéndose los conectivos, mientras que en las cabezas deutocefálicas, se mantiene independiente, conservando los conectivos con el deutocerebro. Esto ocurre en algunos crustáceos como branquiópodos o cefalocáridos. En todos los casos, se diferencia la comisura, que es subesofágica.

Dentro de la cápsula cefálica, el cerebro tiene posición vertical; el protocerebro y el deutocerebro se sitúan hacia arriba, y el tritocerebro es inferior y se dirige hacia atrás.

[editar] Cadena nerviosa ganglionar ventral.

Está formada por un par de ganglios por metámero que en principio presentan conectivos y comisuras. En grupos primitivos, los ganglios de cada par de segmentos se presentan disociados, y la estructura recuerda a una escalera de cuerda. Los grados de concentración y de acortamiento se deben a la supresión de las comisuras y los conectivos respectivamente.

Destaca el ganglio subesofágico; en hexápodos es resultado de la fusión de tres pares de ganglios ventrales correspondientes a los metámeros IV, V y VI e inerva las piezas bucales (las mandíbulas y los dos pares de maxilas) y por ello se llama gnatocerebro; en los decápodos, son seis los ganglios que se asocian (pues se incluyen los tres ganglios de los maxilípedos.

[editar] Sistema nervioso simpático o vegetativo

Neuronas sensitivas y motoras que forman ganglios y que se sitúan sobre las paredes del estomodeo. Este sistema está relacionado con el sistema nervioso central y con el sistema endocrino. En el sistema nervioso simpático se diferencian dos partes:

  • Sistema simpático estomatogástrico. Siempre existe. Es de forma diversa, está formado por ganglios impares, unidos entre sí por nervios recurrentes. Tiene como función la regulación de los procesos de deglución y los movimientos peristálticos del tubo digestivo. Regula también los latidos cardíacos.
  • Sistema simpático terminal o caudal. Puede o no existir. Es también impar, y está ligado a los últimos ganglios de la cadena nerviosa ganglionar ventral. Tiene como función la de inervar el proctodeo, actuar en procesos reproductores, de puesta de huevos y transferencia de esperma, y también regula los latidos de los estigmas de los últimos segmentos del abdomen.

[editar] Moluscos

Diagrama que muestra en el sistema nervioso de los gasterópodos.

En el sistema nervioso de los moluscos, que son lofotrocozos no segmentados, se pueden distinguir dos tipos de distribución ya sea si son antiguos o de más reciente aparición en la escala evolutiva.

[editar] Moluscos primitivos

El primer grupo esta formado por aquellas especies mas antiguas del filo que poseen un sistema nervioso acordonado unido por puentes transversales como los monoplacóforos, caudofoveados, solenogastros y poliplacóforos. Los monoplacóforos muestran un patrón que aun recuerda rasgos presentes en la metamerización de otros protóstomos.

[editar] Moluscos evolucionados

Este segundo grupo está formado por moluscos más modernos que abandonaron por completo cualquier rasgo metamérico para constituir de lleno un sistema nervioso de tipo ganglionar como sucede en el caso de los bivalvos, gasterópodos y cefalópodos.

Bivalvos. Debido a la carencia de segmentación y su simplicidad tienen un par de ganglios importantes en cada una de las regiones cefálica, pedial y visceral el cual están unidos por comisuras.

Gasterópodos. En general cuentan con un par ganglionar bucal para inervar la rádula, un par de ganglios cerebroideos y pedios formando un anillo periesofágico en conjunto con los ganglios pleurales del que parten conectivos hacia los ganglios viscerales y parietales de forma cruzada debido a una torsión de 180º grados.

Los gasterópodos al carecer de segmentación pueden mostrar muchos tipos de organización de los ganglios nerviosos,26 pero a pesar de esto se puede distinguir en los prosobranquios dos tipos de distribuciones principales. La condición epiatroide es aquella en donde el ganglio pleural se encuentra cercano al ganglio cerebroideo en situación superior o lateral al esófago y la condición hipoatroide en donde el ganglio pleural esta próximo o fusionado con el ganglio pedial en situación ventral al esófago.27

Figura que mediante anatomía comparada en corte transversal muestra el sistema nervioso y digestivo de los cicloneuros, hiponeuros y epineuros. También demuestra porque la disposición de los receptores ópticos (véase retina) en los vertebrados (epineuros) miran hacia atrás propiciando un punto ciego necesario. En cambio los ojos de los cefalópodos (hiponeuros) carece de punto ciego, ya que los nervios se sitúan por detrás de la retina y no tapan esa porción.

Cefalópodos. Cuentan también con un par ganglionar bucal para inervar la rádula y tentáculos, pero los ganglios cerebroideos, pedios y pleurales que forman un simple anillo en los gasterópodos en los cefalópodos se encuentran fusionados alrededor del esófago para conformar un cerebro al que John Z. Young dividió en masas supraesofágica y subesofágica para su estudio.28

Tanto la masa supraesofágica como subesofágica están unidas lateralmente por los lóbulos basales y los lóbulos magnocelulares dorsales. Ese arreglo indica que en cerebros primitivos se encontraban dos cuerdas rodeando parcialmente el esófago que incluían las masas subesofágica posterior y media, y que se fusionaron con una tercera cuerda representada por la masa supraesofágica.28 29 En los nautiloideos la presencia de esos tres cordones ancestrales es muy evidente ya que presentan una clara separación en las regiones ventrales y solo se encuentran unidos lateralmente.30

En los decapodiformes los lóbulos bucales superiores se encuentran alejados del resto del cerebro sugiriendo que originalmente estos lóbulos no formaron parte de las cuerdas que rodeaban el esófago en especies ancestrales.28 29

En su conjunto todo estos centros nerviosos que conforman un cerebro son equiparables en complejidad al de los vertebrados, y esta sofisticación es tal, que un rasgo particular y exclusivo de los cefalópodos es la de que este cerebro se encuentra protegido por una masa o caja cartilaginosa en un "intento" evolutivo de formar un cráneo.

Muchos cefalópodos tienen comportamientos de huida rápidos que dependen de un sistema de fibras nerviosas motoras gigantes que controlan las contracciones potentes y sincrónicas de los músculos del manto, lo que permite la salida a presión del agua de la cavidad paleal. El centro de coordinación de este sistema es un par de neuronas gigantes de primer orden (formadas por la fusión de ganglios viscerales) que dan a neuronas gigantes de segundo orden, y estas se extienden hasta un par de grandes ganglios estrellados. De estos ganglios estrellados unas neuronas gigantes de tercer orden inervan las fibras musculares circulares del manto.

Neurólogos de todo el mundo han experimentado con pulpos a lo largo del siglo XX y se ha detectado en ellos una inteligencia superior a cualquier otro invertebrado; son capaces de encontrar la salida de un laberinto, abrir botes e incluso aprender comportamientos de sus congéneres.

A pesar de que los cefalópodos representan la segunda gran cúspide en la evolución de complejidad del sistema nervioso, tienen dos desventajas en comparación a los vertebrados. La primera es la ausencia de mielinización en los cefalópodos causando que los axones sean muy gruesos, desperdiciando espacio y careciendo de contenido en número de neuronas por unidad de volumen en comparación al tejido cerebral de los vertebrados. La segunda es que la hemocianina de los moluscos es menos eficiente en transportación de oxigeno que la hemoglobina de los vertebrados, aventajando estos últimos mayor disponibilidad de oxigeno para el tejido cerebral.

[editar] Principales órganos sensoriales

Los principales órganos sensoriales de los moluscos comprenden lo siguiente:

Ojos. En el caso de los cefalópodos es otro órgano análogo al de los vertebrados, de distinto origen evolutivo y embrionario, pero por convergencia ambos son muy parecidos. Los cefalópodos poseen el ojo más desarrollado de todos los invertebrados e incluso rivalizan con el de los vertebrados.

Estatocistos. Encargados del sentido del equilibrio.

Quimiorreceptores. Como los osfradios que están situados en las branquias, papilas y fosetas olfatorias en la cabeza y el órgano subradular que esta asociado a la rádula.

[editar] Animales deuteróstomos

Los animales deuteróstomos, que son triblásticos, se dividen en dos grupos según su simetría, radial o bilateral, o la disposición de su sistema nervioso, cicloneuros o epineuros.22 Dentro de los cicloneuros se encuentran los equinodermos (de simetría radial) y los hemicordados. El centro nervioso es un anillo situado alrededor de la boca (subectodérmico o subepidérmico). Dentro del grupo de los epineuros se encuentran los urocordados, los cefalocordados y los vertebrados en la que presentan un cordón nervioso hueco y tubular, dorsal al tubo digestivo.22 A partir de este cordón, en animales más complejos, se desarrolla el encéfalo y la médula espinal. Tales modelos de planes corporales quedan dispuestos de esa forma cuando en la gástrula acontecen unos procesos embriológicos llamados isoquilia en los cicloneuros o nototenia en el caso de los epineuros.20

[editar] Cordados

[editar] Urocordados

El sistema nervioso de los urocordados esta adaptado y simplificado para cumplir con los requerimientos de la vida sésil.

Una vez que el tunicado joven madura para dejar la vida libre y convertirse en adulto sésil pierde la notocorda, la cola postanal y tubo neural quedando solo una pequeña porción anterior que se comunica con la cavidad bucal llamada glándula neural. Aunque se desconoce su función a menudo es considerada como homóloga de la hipófisis de los vertebrados.

También el encéfalo sufre una metamorfosis en la edad madura hasta ser sustituido por un ganglio cerebral nuevo, pequeño y compacto.

Anatomía básica de un cefalocordado (anfioxo). En color amarillo se puede observar la vesícula cerebral (1) y el cordón nervioso (3), se encuentra adyacente en situación ventral con respecto a los dos anteriores la notorcorda en color café (2).

[editar] Véase también

[editar] Notas

  1. El grado de plasticidad, centralización y cefalización van de la mano con el grado de complejidad que adquiera el sistema de asociación.
  2. Se adquiere plasticidad cuando un simple reflejo pasa a ser la suma de una serie de respuestas reflejas, lo que implica la presencia de circuitos neuronales complejos con la posibilidad de adoptar distintas decisiones alternativas a un estímulo determinado.
  3. Cavidad gastrovascular

[editar] Referencias

  1. a b Zaidett Barrientos Llosa. Zoología General. EUNED. p. 93. ISBN 9968311901. «El sistema nervioso se encarga de que los animales puedan responder en una forma rápida y eficiente a los cambiantes estímulos del medio ambiente»
  2. a b c d e Luis Palacios Raufast Josefina Blasco Mínguez Teresa Pagés Costas Vicente Alfaro González (2005); Fisiología animal, Edicions Universitat Barcelona, p.47-48; ISBN 84-475-3010-8
  3. a b Víctor Smith Agreda, Elvira Ferrés Torres, Manuel Montesinos Castro-Girona; Manual de embriología y anatomía general‎ - Página 45, Universitat de València, 1992; ISBN 84-370-1006-3, ISBN 978-84-370-1006-9.
  4. Keith L. Moore,T. V. N. Persaud, Embriología Clínica 8 Edición, Página 62; Elsevier España, 2009 ISBN 84-8086-337-4, ISBN 9788480863377.
  5. Frank H. Netter, Alister Brass; Sistema nervioso: anatomía y fisiología Volumen de Colección Netter de ilustraciones médicas, Página 131; Elsevier España, 1994 ISBN 84-458-0187-2, ISBN 978-84-458-0187-1
  6. a b Hooper JNA, Van Soest RWM (2002) Systema Porifera: A Guide to the classification of sponges Vols 1&2. New York: Kluwer Academic/Plenum Publishers.
  7. a b c Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F, et al (2007) A Post-Synaptic Scaffold at the Origin of the Animal Kingdom. PLoS ONE 2(6): e506. doi:10.1371/journal.pone.0000506
  8. a b Dunn, C.W.; Hejnol, A., David Q. Matus, D.Q., et al. (April 2008). «Broad phylogenomic sampling improves resolution of the animal tree of life». Nature 452:  pp. 745–749. doi:10.1038/nature06614.
  9. Schatzberg, Alan F.; Charles B. Nemeroff (en español). Tratado de psicofarmacología. Elsevier, España. pp. 104. ISBN 8445814265.
  10. (en español) Biología y Geología. Editex. pp. 278. ISBN 8497714091.
  11. William F. Ganong (2000); Fisiología médica, 17° Edición; El Manual Moderno, ISBN 0-8385-8252-4.
  12. a b Olaf Breidbach, Wolfram Kutsch, llilian. The nervous systems of invertebrates: an evolutionary and comparative approach Volumen 72 de Experientia supplementum. Birkhäuser. pp. 448. ISBN 3764350768. «The existence of neurons in cnidarians having both sensory and motor functions suggest that these animals must have a reflex arc that is even simpleer than the well-known monosynaptic reflex arc are of mammals.»
  13. Shull, Franklin; George Roger Larue, Alexander Grant Ruthven (1920). Principles of Animal Biology. McGraw-Hill book company. pp. 108.
  14. a b c d Daniel K. Hartline (03/30/09). «Myelin: an invention by vertebrates AND invertebrates».
  15. a b c Starr, Cecie; Ralph Taggart (2008) (en español). Biología: La unidad y diversidad de la vida. Cengage Learning Editores. ISBN 9706867775.
  16. a b c d e f g L. Testut, A. Latarjet; Tratado de anatomía humana, Tomo II Angiología - Sistema Nervioso Central, Salvat Editores. Barcelona, España
  17. a b c d L. Testut, A. Latarjet; Tratado de anatomía humana, Tomo III Meninges - Sistema nervioso periférico - Órganos de los sentidos - Aparato de la respiración y de la fonación - Glándulas de secreción interna, Salvat Editores. Barcelona, España
  18. a b NeoFronteras; El origen del sistema nervioso encontrado en las esponjas, Viernes, 15 de Junio de 2007
  19. Lily Whiteman, Zina Deretsky, Patrick Herendeen, National Science Foundation (10-04-2008). «And the First Animal on Earth Was a...» (en inglés). «But even after Dunn's team checked and rechecked their results and added more data to their study, their results still suggested that the comb jelly, which has tissues and a nervous system, split off from other animals before the tissue-less, nerve-less sponge.».
  20. a b c Real Sociedad Española de Historia Natural, Instituto de Ciencias Naturales José de Acosta, Consejo Superior de Investigaciones Científicas (Spain); Boletín de la Real Sociedad Española de Historia Natural: órgano del Instituto de Ciencias Naturales José de Acosta, Volúmenes 65-66, Página 355
  21. a b Enciclopedia temática Ciesa: Zoología, agronomía, veterianaria y zootecnica. 3. Campañía Internacional Editora. 1967. p. 37. «Hay que distinguir en ellos los protostomos, que además son hiponeuros, es decir, que tienen el sistema nervioso ventral, y los deuteróstomos. Entre los primeros se incluyen los tipos o filos de los anélidos, artrópodos,platelmintos, nemertinos o rincocelos, moluscos y los asquelmintos, que reúnen una serie de clases dispares: rotíferos, gastrotricos, quinorrincos, priapuloideos, nematodos, nematomorfos, y acantocéfalos»
  22. a b c Enciclopedia temática Ciesa: Zoología, agronomía, veterianaria y zootecnica. 3. Campañía Internacional Editora. 1967. p. 37. «Los deuteróstomos, en rigor, comprenden dos linajes: los cicloneuros y los epineuros. Los primeros, que presentan un sistema nervioso más o menos anular, a lo que deben su nombre, ... Los epineuros, que presentan el sistema nervioso dorsal, son los cordados, que constituyen un solo tipo, dividido en tres subtipos: cefalocordados, tunicados y vertebrados»
  23. a b Olaf Breidbach, Wolfram Kutsch. The nervous systems of invertebrates: an evolutionary and comparative approach Volumen 72 de Experientia supplementum. Birkhäuser. pp. 448.. ISBN 3764350768.
  24. a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 182–195. ISBN 0-03-025982-7.
  25. "Photoreception."Encyclopædia Britannica from Encyclopædia Britannica 2006 Ultimate Reference Suite DVD . 2009.
  26. Behavior and its neural control in gastropod molluscs. Oxford University Press US. 2002. p. 17. «The absence of segmentation in molluscs allow the nervous system to be organized in a variety of ways.»
  27. Behavior and its neural control in gastropod molluscs. Oxford University Press US. 2002. p. 18. «(A)Hypoathroid condition, in which the pleural ganglia are close to the pedal ganglion (pedal cord). (B)Epiathroid condition, in which the pleural ganglia are close to the cerebral ganglion»
  28. a b c Richard E. Young, Michael Vecchione, and Katharina M. Mangold (1922-2003). «Cephalopod Brain Terminology» (en inglés). Consultado el 16 de febrero de 2010.
  29. a b Young, J. Z. (1971). The Anatomy of the Nervous System of Octopus vulgaris. Oxford: Claredon Press. pp. 690.
  30. Young, J. Z. (1965). The central nervous system of Nautilus. Phil. Trans. R. Soc.. pp. 249.

[editar] Enlaces externos

FILOSOFÍA24: ¿CÓMO PODRÍA TENER EL SISTEMA NERVIOSO O LOS NERVIOS UN SUPUESTO ALIENIGENA? m. anat. Cordón compuesto de muchos filamentos o fibras nerviosas que,partiendo del cerebro,la médula espinal u otros centros,se distribuyen por todas las partes del cuerpo,conduciendo los impulsos nerviosos.

Nervio

Para otros usos de este término, véase Nervio (desambiguación).

nervio

  1. m. anat. Cordón compuesto de muchos filamentos o fibras nerviosas que,partiendo del cerebro,la médula espinal u otros centros,se distribuyen por todas las partes del cuerpo,conduciendo los impulsos nerviosos.
  2. Cualquier tendón o tejido blanco,duro y resistente:
    este filete tiene muchos nervios.
  3. bot. Haz fibroso de las hojas de las plantas.
  4. zool. Fibra que forma el esqueleto de las alas de los insectos.
  5. Fuerza,vigor:
    caballo con mucho nervio.
  6. Cada una de las cuerdas que se colocan al través en el lomo de un libro para encuadernarlo.
  7. Tensión,excitación. Más en pl.:
    no dejes que te traicionen los nervios.
  8. arquit. Arco que al cruzarse con otros forma la bóveda de crucería; nervadura.
  9. nervio ciático anat. El más grueso del cuerpo,que se distribuye en los músculos posteriores del muslo,en los de la pierna y en la piel de esta y del pie:
    coloquialmente se llama ciática a la dolencia derivada de la inflamación del nervio ciático.
  10. nervio óptico anat. El que transmite al cerebro las impresiones luminosas percibidas por el ojo.
  11. perder alguien los nervios loc. Perder el equilibrio emocional momentáneamente:
    cuando recibió la triste noticia,perdió los nervios y empezó a gritar.
  12. poner a alguien los nervios de punta loc. Alterar o exasperar en grado sumo:
    no puedo verlos pelear,me ponen los nervios de punta.
  13. ser alguien puro nervio o un puro nervio loc. col. Ser muy activo e inquieto:
    siempre encuentra algo que hacer,es un puro nervio.


Preguntas en los foros con la(s) palabra(s) 'nervio' en el título:

Ningún título tiene la(s) palabra(s) 'nervio'.


'nervio' también aparece en estas entradas

acelga - acústico - aferente - amaurosis - ciático - contracción - contraer - dentina - entumecer - ganglio - hoja - inervar - insensibilización - nervadura - neumogástrico - neuralgia - neuro- - óptico - papila - penca - pinzamiento - raspa - recurrente - vago - vasomotor

nervio

  • energía, vigor, vitalidad, fuerza, ímpetu, empuje, garra, brío
    • Antónimos: pusilanimidad, timidez
  • nervadura, nervatura
  • nerviosismo, inquietud, excitación


'nervio' también aparece en estas entradas
Nervio periférico
Peripheral nerve, cross section.jpg
Microfotografía de tejido nervioso
Latín Nervus
Sistema Nervioso

Un nervio periférico o comúnmente conocido como nervio es un conjunto de fibras nerviosas o axones (en ocasiones dendritas) asociadas en fascículos por medio de tejido conjuntivo.

Contenido

[ocultar]

[editar] Descripción

Los nervios son manojos de prolongaciones nerviosas de sustancia blanca, en forma de cordones que hacen comunicar los centros nerviosos con todos los órganos del cuerpo. Forman parte del sistema nervioso periférico. Los nervios aferentes transportan señales sensoriales al cerebro, por ejemplo de la piel u otros órganos, mientras que los nervios eferentes conducen señales estimulantes desde el cerebro hacia los músculos y glándulas.

Estas señales, a menudo llamadas impulsos nerviosos, son también conocidas como potenciales de acción: ondas eléctricas que viajan a grandes velocidades, las cuales nacen comúnmente en el cuerpo celular de una neurona y se propagan rápidamente por el axón hacia su extremo, donde por medio de la sinapsis, se transmite a otra neurona.

[editar] Estructuras

En los nervios se pueden distinguir distintos componentes:

  • Epineuro: Es la capa más externa de un nervio y está constituida por células de tejido conectivo y fibras colágenas, en su mayoría dispuestas longitudinalmente. También pueden encontrarse algunas células adiposas.
  • Perineuro: Es cada una de las capas concéntricas de tejido conjuntivo que envuelve cada uno de los fascículos más pequeños de un nervio.
  • Endoneuro: Son unos finos fascículos de fibras colágenas dispuestas longitudinalmente, junto con algunos fibroblastos introducidos en los espacios situados entre las fibras nerviosas. El finísimo endoneuro está formado por delicadas fibras reticulares que rodean a cada fibra nerviosa.
  • Axolema: También conocido como membrana axonal, envuelve el axón de la fibra nerviosa.
  • Células de Schwann: células capaces de fabricar la mielina que envuelve los nervios del SNP (menos las fibras C, que no disponen de esta cubierta).
  • Oligodendrocitos: células capaces de fabricar la mielina que envuelve los nervios del SNC.

Conforme el nervio se va ramificando, las vainas de tejido conjuntivo se hacen más finas. En las ramas más pequeñas falta el epineuro, y el perineuro no puede distinguirse del endoneuro, ya que está reducido a una capa delgada fibrilar recubierta de células conjuntivas aplanadas que se parecen a las células endoteliales. Los vasos sanguíneos se localizan en el epineuro y en el perineuro y raras veces se encuentran en los acúmulos más densos de endoneuro.

[editar] Tipos de nervios

En amarillo, nervios del brazo

Los nervios se pueden clasificarse en tres tipos según:

  1. La clasificación de Erlanger y Gasser, a su vez divisible en:
    1. Fibras de tipo A, con vaina de mielina y que se subdividen en los tipos:
      1. alfa: velocidad de conducción 70-120 m/s, diámetro 12-20 micras, responsables de la propiocepción;
      2. beta: vel. de cond. 30-70 m/s, diám. 5-12 micras, resp. del tacto y la presión;
      3. gamma: vel. de cond. 15-30 m/s, diám. de 3-6 micras, resp. de la transmisión motriz a los husos musculares; y
      4. delta: vel. de cond. 12-30 m/s, diám. 2-5 micras, resp. de la transm. del dolor, el frío y parte del tacto;
    2. fibras B, mielinizadas, resp. de la conexión autónoma preganglionar (Vel. cond. 3-15 m/s, diám. inferior a tres micras) y
    3. fibras C, no mielinizadas (sin vaina de mielina), resp. de la transm. del dolor, la temperatura, información de algunos mecanorreceptores y de las respuestas de los arcos reflejos (Vel. cond. 0,5-2 m/s, diám. de 0,4-1,2 micras)
  2. Su origen:
    1. Nervios Craneales: nacen del encéfalo o en el bulbo.
    2. Nervios Raquídeos: nacen de la médula espinal.
    3. Nervios del gran Simpático.
  3. Su función:
    1. Nervios sensitivos o centrípetos: se encargan de conducir las excitaciones del exterior hacia los centros nerviosos. Son bastantes escasos. Generalmente las fibras nerviosas se hallan asociadas con fibras motoras (centrífugas). Como ejemplo de nervio sensitivo puro podemos citar el nervio de Wrisberg, que conduce al cerebro la sensibilidad de las glándulas salivales.
    2. Nervios sensoriales: se ubican dentro de los anteriores, pero se encargan únicamente de transmitir estímulos provenientes de los órganos de los sentidos.
    3. Nervios motores o centrífugos: llevan a los músculos o a las glándulas la orden de un movimiento o de una secreción impartida por un centro nervioso.
    4. Nervios mixtos: funcionan a la vez como sensitivos y motores. Se hallan constituidos por fibras que llevan las excitaciones exteriores hacia los centros nerviosos y órdenes de los músculos, de los centros hacia la periferia. Como ejemplo podemos citar el glosofarígeo que transmite al cerebro la excitación del gusto y produce al mismo tiempo la excitación de la lengua. Pertenecen a esta clase de nervios todos los nervios raquídeos y varios nervios craneanos.

[editar] Propiedades de los nervios

El nervio tiene dos propiedades esenciales: la excitabilidad y la conductividad.

[editar] Excitabilidad

La excitabilidad es la propiedad que tiene la célula nerviosa de adquirir un movimiento vibratorio molecular bajo la acción de un excitante. La célula puede ser excitada por un centro nervioso, por un excitante natural como la luz o por un excitante artificial como una descarga eléctrica. El estímulo propagado se denomina impulso nervioso, y su paso de un punto a otro de la fibra nerviosa es la conducción nerviosa.1

Los excitantes artificiales pueden ser de varias clases: El excitante es mecánico o físicos, como la compresión, calor, corriente eléctrica, etc.; por ejemplo cuando se provoca la contracción de las patas de una rana pinchando el nervio crural. Será químico si se aplica un ácido o un álcali, etc.); por ejemplo si se aplica un cristal de cloruro de sodio sobre el mismo nervio para conseguir el mismo efecto. Será térmico si se pone bruscamente el mismo nervio en contacto con un cuerpo caliente consiguiendo la misma contracción.

El excitante más empleado en la fisiología es la electricidad porque es muy fácil regular su intensidad y la duración de su aplicación.

[editar] Conductividad

La conductibilidad es la propiedad que tiene el nervio de asegurar la propagación del movimiento vibratorio a lo largo del nervio en la forma ondulatoria a la manera que se propaga una onda en la superficie del agua.

Esta propiedad permite a una dendrita transmitir a un centro nervioso la excitación que proviene de un pinchazo periférico, por ejemplo, y a un cilindro eje de llevar a otra neurona o a un músculo la excitación que proviene de un centro nervioso.

Para que se ejerza la conductibilidad es necesario que el nervio no haya sufrido ninguna degeneración y que en su trayecto tenga perfecta continuidad. En el nervio normal la intensidad del impulso se mantiene constante durante todo el trayecto, obedeciendo a la ley del «todo o nada».1

Un nervio puede perder la excitabilidad sin perder la conductibilidad; así la parte de un nervio sometida a la acción del gas carbónico, deja de ser excitable; pero sí se aplica la corriente eléctrica a la otra parte del nervio, la parte no excitable podrá conducir la excitación. Un nervio no se cansa al conducir el flujo nervioso; pero un centro nervioso puede fatigarse con un trabajo intelectual intenso.

La conducción de un nervio sensitivo es centrípeda y la de un nervio motor es centrífuga. Los nervios mixtos participan en las dos cualidades.

[editar] Referencias

  1. a b Ciencias de la Naturaleza y su didáctica. Julia Morros Sardá. pag 179

[editar] Véase también

[editar] Enlaces externos

FILOSOFÍA24: ¿HAY MUCHAS "VENGANZAS" EN EL BOSQUE? ¿CÓMO SE ORGANIZAN PARA "VENGARSE"? ¿NO GENERA UNA ESPIRAL CONTINUA DE "VENGANZAS"? ¿EN QUÉ CONSISTEN LAS VENGANZAS? ¿PUEDEN CONTARNOS CON DETALLE?

¿SE SIENTEN TRANQUILOS?

LUEGO LES PASAMOS TODOS LOS LIBROS QUE SE HAGAN SOBRE ESTO.

Diccionario de sinónimos y antónimos © 2005 Espasa-Calpe:

venganza

  • desquite, represalia, revancha, resarcimiento, vendetta, desafío, ajuste, escarmiento, vindicta
    • Antónimos: perdón, olvido, reconciliación


'venganza' también aparece en estas entradas

castigo - desquite - revancha - talión - vindicación

Diccionario de la lengua española © 2005 Espasa-Calpe:

venganza

  1. f. Respuesta con una ofensa o daño a otro recibido:
    mi venganza será terrible.


Preguntas en los foros con la(s) palabra(s) 'venganza' en el título:


'venganza' también aparece en estas entradas

-anza - moneda - clamar - consumar - furia - guardar - ira - jurar - madurar - masticar - represalia - revancha - revanchismo - rumiar - sediento - vendetta - vengativo - vindicativo

Venganza

Este artículo trata sobre el desquite; para el álbum musical, véase «¡Venganza!».

La venganza consiste primordialmente en el desquite contra una persona o grupo en respuesta a una mala acción percibida. Aunque muchos aspectos de la venganza se asemejan al concepto de justicia, la venganza en general persigue un objetivo más injurioso que reparador. El deseo de venganza consiste en forzar a quien haya hecho algo malo en sufrir el mismo dolor que él infligió, o asegurarse de que esta persona o grupo no volverá a cometer dichos daños otra vez. La venganza es un acto que, en la mayoría de los casos, causa placer a quien la efectúa, debido al sentimiento de rencor que ocasiona el antecedente factor.

[editar] Definición

La venganza es un tema muy disputado en filosofía.

[editar] En la historia

En sociedades antiguas, en particular aquellas con sistemas de justicia central débiles, el método para disuadir a los asesinos era permitir a la familia del asesinado vengarse del asesino. Sin embargo, si las familias del asesino y del asesinado estaban en desacuerdo sobre el asesinato, seguramente estarían en desacuerdo también con cualquier medida vengativa, con lo cual podía llegarse finalmente a una pelea sangrienta.

Las vendettas o peleas de sangre, son una secuencia de actos o acciones premeditadas, motivadas por la venganza y llevadas a cabo a lo largo de un tiempo por familias o grupos reclamando justicia; fueron parte importante de sociedades pre-industriales, especialmente en la región Mediterránea, y aún hoy persisten en algunas áreas, por ejemplo en el norte de Albania. Allí, los miembros masculinos de las familias que temen un acto de venganza suelen vivir encerrados en su casa para evitar ser asesinados.

En el pasado feudal de Japón, la clase samurái mantenía el honor de la familia o clan de su señor feudal, a través del asesinato vengativo o katakiuchi. Estos asesinatos podían también involucrar a familiares del ofensor. Hoy, el katakiuchi se lleva a cabo de manera pacífica, pero la venganza aún es una parte importante de la cultura japonesa.

El objetivo de algunos sistemas legales está limitado a la "justa" venganza.

El sistema legal moderno Occidental usualmente establece como objetivo la reforma o reeducación de quien comete un crimen o acto criminal. Aun en estos sistemas, sin embargo, la sociedad es concebida como víctima de las acciones criminales, y la venganza de tales actos es una parte importante del concepto de justicia -- un criminal "paga sus deudas con la sociedad".

Es interesante saber que los psicólogos han descubierto que la frustrada expectativa psicológica de venganza puede llevar a la victimización.

El proverbio "la venganza es un plato que se sirve frío" proviene de una novela del siglo XVIII titulada Les liaisons dangereuses, escrita por el oficial francés y general del Ejército Pierre Choderlos de Laclos.

[editar] Enlaces externos