Blogia
petalofucsia

MATEMÁTICAS4: YO CREO QUE, EN MATEMÁTICAS, TAL VEZ TODOS LOS NÚMEROS O CIFRAS CONTENGAN ERROR MATEMATICO Y MÁS NEGATIVIDAD INTELECTUALMENTE, ENTENDIDO COMO UNA DERIVACIÓN, HASTA LLEGAR AL NÚMERO "PERFECTO" QUE PODRÍA AUNAR UN CONJUNTO DE CARACTERÍSTICAS QUE LO HICIESEN ÚNICO E IRREPETIBLE, ESTE NÚMERO PODRÍA SER TAMBIÉN, APARTE DE LA PERFECTA, LA ORDEN O LA MEMORIA, Y PODRÍAMOS LLEGAR A ENTENDER QUE SIGUIESE UNA SECUENCIA AL SER TAMBIÉN LA ORDEN. TAMBIÉN SE RELACIONÓ ESTE NÚMERO CON LOS "OPTIMOS". PODRIAMOS DILUCIDAR QUE ESTE NÚMERO FUESE ÚNICO E IRREPETIBLE EN SUS CARACTERISTICAS PROPIAS. QUIZÁS EN LA CREACIÓN YA SE OMITIÓ LA DERIVACIÓN DE LA QUE SE SUPONE QUE PROCEDEMOS Y QUIZÁS ALGÚN DÍA PODAMOS MATEMATIZARLO TODO INCLUSO ESTA DERIVACIÓN. DIGO QUE TAL VEZ SE OMITIÓ, EN PRINCIPIO EL YIN Y EL YANG SON ETERNOS, NUESTRA ESENCIA. ¿PUDO HABER UNA "MEGAESENCIA" PREVIA DE LA QUE SE DERIVÓ? SEGÚN MIS RECUERDOS SIEMPRE TUVE CONCIENCIA DE EXISTIR Y ME PREGUNTO SI, SÓLO POR EXISTIR YA DEBERÍA DE TENER CONCIENCIA...

Derivación (matemática)

De Wikipedia, la enciclopedia libre
Derivación.gif

Concepto matemático esencial para determinar los espacios tangentes sobre variedades diferenciables sus cualidades, propiedades y consecuencias.

Es una pieza fundamental, clave en el desarrollo de la teoría para la geometría diferencial tal y como está estructurada actualmente.

Posiblemente buscaba derivada, Derivación numérica o Diferencia finita.

Contenido

[ocultar]

[editar] Definición de derivación

Sea M_{}^{} una variedad diferenciable y  p in M , llamaremos derivación en el punto  p_{}^{} a

 forall delta_p : mathcal{F}(M)   longrightarrow{}  mathbb{R} aplicación mathbb{R}-lineal, es decir:forall f,g in mathcal{F}(M), forall lambda in mathbb{R},
  •  delta_p^{}(g+f)= delta_p(g)+ delta_p(f)^{},
  •  delta_p^{}(lambda f)=lambda delta_p(f)^{}.
y tal que  delta_p(f  cdot g) = δp(f)g | p + f | pδp(g),  forall f,g in mathcal{F}(M), es decir, que cumple la regla de Leibniz.

Observación

mathcal{F}(M) es el conjunto de funciones diferenciables en M_{}^{}, y es un mathbb{R}-álgebra conmutativa, (es un mathbb{R}-espacio vectorial).f_{|p}^{} es equivalente a  f(p)_{}^{} , es decir, f_{}^{} evaluado en el punto p_{}^{}.

[editar] Ejemplos de derivación

[editar] La derivada parcial

Sea  M= mathbb{R}^n y  p in M, veamos que la aplicación siguiente es derivación:

 

begin{matrix} frac{{partial cdot}}{{partial x_i}}_{|p}: & { mathcal{F}(M) } & longrightarrow{} & mathbb{R}  & {f} & mapsto & {frac{{partial f}}{{partial x_i}}}_{|p} end{matrix}.


Demostración:

Veamos primero que es mathbb{R}-lineal, es decir, que forall f,g in mathcal{F}(M) ; y ; forall lambda in mathbb{R} vemos que:
  • frac{{partial (f+g)}}{{partial x_i}}_{|p}=frac{{partial f}}{{partial x_i}}_{|p}+frac{{partial g}}{{partial x_i}}_{|p},
  • frac{{partial (lambda g )}}{{partial x_i}}_{|p}=lambda frac{{partial g}}{{partial x_i}}_{|p}.
Veamos finalmente que es una derivación:frac{{partial (f cdot g)}}{{partial x_i}}_{|p}=frac{{partial f}}{{partial x_i}}_{|p}g_{|p}+f_{|p}frac{{partial g}}{{partial x_i}}_{|p}.Queda, así, demostrado que la derivada parcial es una derivación.

[editar] La derivada direccional

Sea  M= mathbb{R}^n ,; p in M ; y ; v in M : || v ||=1, de igual modo que el ejemplo anterior se puede ver que la aplicación siguiente es derivación:

begin{matrix} frac{{partial cdot}}{{partial v}}_{|p}: & { mathcal{F}(M) } & longrightarrow{} & mathbb{R}  & {f} & mapsto & {frac{{partial f}}{{partial v}}}_{|p} end{matrix}.

[editar] Definiciones

PlanoTangente.png

Sea M_{}^{} una variedad diferenciable y  p in M , llamaremos espacio tangente a M_{}^{} en p_{}^{} al mathbb{R}-espacio vectorial de las derivaciones de M_{}^{} en p_{}^{}, notado por  mathcal{T}_p M , y sus elementos se llamaran vectores tangentes a M_{}^{} en p_{}^{}.

[editar] Consecuencias

[editar] Propiedad de la derivación de una función localmente constante

Sea M_{}^{} una variedad diferenciable,  p in M ,  forall delta_p in mathcal{T}_p M y  f  in mathcal{F}(M) tal que  exists{} U_{}^{} entorno abierto en p_{}^{} donde f(x) = λ,  forall x in M , entonces tenemos que  delta_p^{} f = 0 .

Demostración:

Por linealidad de  delta_p^{} tenemos delta_p ( f ) = delta_p ( lambda ) = delta_p ( lambda cdot 1) = λδp(1),aquí aplicando la condición de derivación a  delta_p^{} (1) tenemos delta_p (1) = delta_p (1 cdot 1) =  delta_p (1) 1 + 1 delta_p^{} (1) =   delta_p (1) + delta_p^{} (1) ,de simplificar, este último, resulta  delta_p^{} (1) = 0 aplicadolo al anterior resulta que  delta_p^{} ( f ) = 0 .

[editar] Ejemplo

Nos interesa que la función localmente constante sea infinitamente diferenciable en todas partes, es decir, de clase  mathcal{C}^{ infty } :

  • la función meseta ρ asociada a  (p,V)_{}^{} , donde ρ(x) = 1,  forall x in k subset V, ; k compacto cuyo interior contiene a p_{}^{}.

[editar] Propiedad de la derivación del producto con la función meseta

Sea M_{}^{} una variedad diferenciable,  p in M , ; forall delta_p in mathcal{T}_p M ,  f  in mathcal{F}(M) y ρ una función meseta asociada a  (p,V)_{}^{} , tenemos que:

 delta_p^{} (rho cdot f) = delta_p( f ) .

Demostración:

Aplicando la regla de Leibniz tenemos que  delta_p^{} (rho cdot f)= delta_p^{}(rho) f(p) + rho(p) delta_p(f), por la propiedad anterior tenemos que   delta_p^{} (rho cdot f)= 0 cdot f(p) + 1 cdot delta_p^{}(f)=delta_p^{}(f).

[editar] Propiedad

Sea M_{}^{} una variedad diferenciable,  p in M , ; forall delta_p in mathcal{T}_p M y  f,g  in mathcal{F}(M) tal que  exists{} V_{}^{} entorno abierto en p_{}^{} donde f_{|V}^{}=g_{|V}, entonces tenemos que  delta_p^{} ( f ) =  delta_p ( g ) .

Demostración:

Sea ρ una función meseta asociada a  (p,V)_{}^{} , tenemos así que  rho cdot f = rho cdot g_{}^{} en todo  M_{}^{} también  rho cdot f,rho cdot g in mathcal{F}(M) por tanto  delta_p^{} (rho cdot f ) = delta_p ( rho cdot g ) y por la propiedad anterior tenemos que  delta_p^{} ( f ) =  delta_p ( g ) .

[editar] Bibliografía

  • Carlos Currás Bosch, Geometria diferencial: varietats diferencialbles i varietats de Riemann, Ed:UB. 3002.

1 comentario

petalofucsia -

La perfecta, no debería de tener ningún error matemático claro.

También asocié inteligencia y negatividad. La magia también parece hacerlo (recuérdese el rostro de negatividad del alienígena, donde se estudiaba la inteliencia...).