Blogia
petalofucsia

Ciencia2

CIENCIA2: MAGNETISMO. El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético. También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.

El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.

También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.

Obtenido de http://es.wikipedia.org/wiki/Magnetismo

CIENCIA2: ASTRONOMÍA. EL UNIVERSO MAGNÉTICO. TORMENTAS ELÉCTRICAS. El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético. También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.

Tormenta

De Wikipedia, la enciclopedia libre

Para otros usos de este término, véase Tormenta (desambiguación).
Momento de la tormenta eléctrica que tuvo lugar en Hospitalet de Llobregat, Cataluña, España el 7 de septiembre de 2005.
Imagen de la base de una tormenta obtenida en Enschede, Holanda.

Una tormenta (del germánico común sturmaz que viene a significar "ruido" o "tumulto") es un fenómeno caracterizado por la coexistencia próxima de dos o más masas de aire de diferentes temperaturas. Este contraste asociado a los efectos físicos implicados desemboca en una inestabilidad caracterizada por lluvias, vientos, relámpagos, truenos y ocasionalmente granizos entre otros fenómenos meteorológicos.

Aunque científicamente se define como tormenta a aquella nube capaz de producir un trueno audible, también se denominan tormentas en general a los fenómenos atmosféricos violentos que, en la superficie de la tierra están asociados a lluvia, hielo, granizo, electricidad, nieve o vientos fuertes -que pueden transportar partículas en suspensión como la tormenta de arena o incluso pequeños objetos o seres vivos-.

[editar] Formación de las tormentas

Las tormentas se crean cuando un centro de baja presión se desarrolla con un sistema de alta presión que lo rodean. Esta combinación de fuerzas opuestas puede crear vientos y resultar en la formación de nubes de tormenta, como el cumulonimbo.

El contraste térmico y otras propiedades de las masas de aire húmedo dan origen al desarrollo de fuertes movimientos ascendentes y descendentes (convección) produciendo una serie de efectos característicos, como fuertes lluvias y vientos en la superficie e intensas descargas eléctricas. Esta actividad eléctrica se pone de manifiesto cuando se alcanza la tensión de ruptura del aire, momento en el que se genera el rayo que da origen a los fenómenos característicos de relámpago y trueno. La aparición de relámpagos depende de factores tales como el grado de ionización atmosférico, además del tipo y la concentración de la precipitación.

Las tormentas obtienen su energía de la liberación de calor latente que se produce en la condensación del vapor del agua en las parcelas ascendentes de la tormenta.

[editar] Características

Mientras que en los Estados Unidos el término "storm" se refiere estrictamente y en el ámbito meteorológico únicamente a tormentas intensas con vientos en superficie de al menos 80 km/h, el término "tormenta" es mucho menos restrictivo. Las tormentas producen nubes de desarrollo vertical -Cumulonimbus - Cúmulus- que pueden llegar hasta la tropopausa en torno a 10 km de altura. El ciclo de actividad de una tormenta típica presenta una fase inicial de formación, intermedia de madurez y final de decaimiento que dura en torno a una o dos horas.

Por regla general una célula convectiva de tormenta posee una extensión horizontal de unos diez kilómetros cuadrados. Sin embargo, frecuentemente se producen simultánea o casi simultáneamente varias células convectivas que desencadenan fuertes precipitaciones durante un periodo de tiempo más largo. En ocasiones, cuando las condiciones del viento son adecuadas, una tormenta puede evolucionar hasta el estado de supercélula originando series de corrientes ascendentes y descendentes y abundante precipitación durante varias horas.

Las tormentas pueden contener vórtices de aire, es decir, viento girando en torno a un centro (como los huracanes). Las tormentas que contienen estos vórtices (supercélulas) son muy intensas y como característica es probable que puedan producir trombas marinas y tornados, suelen originarse en zonas muy cerradas, donde el viento no tiene suficiente escape.

Una tormenta tropical hace referencia a una tormenta de mayores dimensiones en latitudes subtropicales alternando regiones ascendentes y descendentes y capaz de evolucionar potencialmente hasta el estado de huracán.

[editar] Bibliografía

Tormentas eléctricas

  • Feynman, R. (1964, 1966). The Feynman Lectures on Physics, 2 vol. (en inglés)

CIENCIA2: ASTRONOMÍA. MAGNETISMO. El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético. También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz

Magnetismo

De Wikipedia, la enciclopedia libre

Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel.

El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.

También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.

Contenido

[ocultar]

[editar] Breve explicación del magnetismo

Cada electrón es por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.

Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general, el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones, los movimientos pueden alinearse y producir un campo magnético total medible.

El comportamiento magnético de un material depende de la estructura del material y, particularmente, de la configuración electrónica.

[editar] Historia

Los fenómenos magnéticos fueron conocidos por los antiguos griegos. Se dice que por primera vez se observaron en la ciudad de Magnesia del Meandro en Asia Menor, de ahí el término magnetismo. Sabían que ciertas piedras atraían el hierro y que los trocitos de hierro atraídos, atraían a su vez a otros. Estas se denominaron imanes naturales.[cita requerida]

El primer filósofo que estudió el fenómeno del magnetismo fue Tales de Mileto, filósofo griego que vivió entre 625 a. C. y 545 a. C.[1] En China, la primera referencia a este fenómeno se encuentra en un manuscrito del siglo IV a. C. titulado Libro del amo del valle del diablo: «La magnetita atrae al hierro hacia sí o es atraída por éste».[2] La primera mención sobre la atracción de una aguja aparece en un trabajo realizado entre los años 20 y 100 de nuestra era: «La magnetita atrae a la aguja».

El científico Shen Kua (1031-1095) escribió sobre la brújula de aguja magnética y mejoró la precisión en la navegación empleando el concepto astronómico del norte absoluto. Hacia el siglo XII los chinos ya habían desarrollado la técnica lo suficiente como para utilizar la brújula para mejorar la navegación. Alexander Neckham fue el primer europeo en conseguir desarrollar esta técnica, en 1187.

El conocimiento del magnetismo se mantuvo limitado a los imanes, hasta que en 1820, Hans Christian Ørsted, profesor de la Universidad de Copenhague, descubrió que un hilo conductor sobre el que circulaba una corriente ejercía una perturbación magnética a su alrededor, que llegaba a poder mover una aguja magnética situada en ese entorno.[3] Muchos otros experimentos siguieron, con André-Marie Ampère, Carl Friedrich Gauss, Michael Faraday y otros que encontraron vínculos entre el magnetismo y la electricidad. James Clerk Maxwell sintetizó y explicó estas observaciones en sus ecuaciones de Maxwell. Unificó el magnetismo y la electricidad en un solo campo, el electromagnetismo. En 1905, Einstein usó estas leyes para comprobar su teoría de la relatividad especial,[4] en el proceso mostró que la electricidad y el magnetismo estaban fundamentalmente vinculadas.

El electromagnetismo continuó desarrollándose en el siglo XX, siendo incorporado en las teorías más fundamentales, como la teoría de campo de gauge, electrodinámica cuántica, teoría electrodébil y, finalmente, en el modelo estándar.

[editar] La física del magnetismo

[editar] Magnetismo, electricidad y relatividad especial

[editar] Campos y fuerzas magnéticas

Artículo principal: campo magnético

El fenómeno del magnetismo es ejercido por un campo magnético, p.e. una corriente eléctrica o un dipolo magnético crea un campo magnético, éste al girar imparte una fuerza magnética a otras partículas que están en el campo.

Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase electrodinámica cuántica) las ecuaciones de Maxwell (que simplifican la ley de Biot-Savart en el caso de corriente constante) describen el origen y el comportamiento de los campos que gobiernan esas fuerzas. Por lo tanto el magnetismo se observa siempre que partículas cargadas eléctricamente están en movimiento. Por ejemplo, del movimiento de electrones en una corriente eléctrica o en casos del movimiento orbital de los electrones alrededor del núcleo atómico. Estas también aparecen de un dipolo magnético intrínseco que aparece de los efectos cuánticos, p.e. del spin de la mecánica cuántica.

La misma situación que crea campos magnéticos (carga en movimiento en una corriente o en un átomo y dipolos magnéticos intrínsecos) son también situaciones en que el campo magnético causa sus efectos, creando una fuerza. Cuando una partícula cargada se mueve a través de un campo magnético B, se ejerce una fuerza F dado por el producto cruz:

vec{F} = q vec{v} times vec{B}

donde q, es la carga eléctrica de la partícula, vec{v} , es el vector velocidad de la partícula y vec{B} , es el campo magnético. Debido a que esto es un producto cruz, la fuerza es perpendicular al movimiento de la partícula y al campo magnético.

La fuerza magnética no realiza trabajo mecánico en la partícula, esto cambiaría la dirección del movimiento de ésta, pero esto no causa su aumento o disminución de la velocidad. La magnitud de la fuerza es :F = q v B sintheta, donde theta , es el ángulo entre los vectores vec{v} , y vec{B} ,.`

Una herramienta para determinar la dirección del vector velocidad de una carga en movimiento, es siguiendo la ley de la mano derecha (véase Regla de la mano derecha).

El físico alemán Heinrich Lenz formuló lo que ahora se denomina la ley de Lenz, ésta da una dirección de la fuerza electromotriz (fem) y la corriente resultante de una inducción electromagnética.

[editar] Dipolos magnéticos

Artículo principal: dipolo magnético

Se puede ver una muy común fuente de campo magnético en la naturaleza, un dipolo. Éste tiene un "polo sur" y un "polo norte", sus nombres se deben a que antes se usaban los magnetos como brújulas, que interactuaban con el campo magnético terrestre, para indicar el norte y el sur del globo.

Un campo magnético contiene energía y sistemas físicos que se estabilizan con configuraciones de menor energía. Por lo tanto, cuando se encuentra en un campo magnético, un dipolo magnético tiende a alinearse solo con una polaridad diferente a la del campo, lo que cancela al campo lo máximo posible y disminuye la energía recolectada en el campo al mínimo. Por ejemplo, dos barras magnéticas idénticas pueden estar una a lado de otra normalmente alineadas de norte a sur, resultando en un campo magnético más pequeño y resiste cualquier intento de reorientar todos sus puntos en una misma dirección. La energía requerida para reorientarlos en esa configuración es entonces recolectada en el campo magnético resultante, que es el doble de la magnitud del campo de un magneto individual. (Esto es porque un magneto usado como brújula interactúa con el campo magnético terrestre para indicar Norte y Sur)

Una alternativa formulada, equivalente, que es fácil de aplicar pero ofrece una menor visión, es que un dipolo magnético en un campo magnético experimenta un momento de un par de fuerzas y una fuerza que puede ser expresada en términos de un campo y de la magnitud del dipolo (p.e. sería el momento magnético dipolar). Para ver estas ecuaciones véase dipolo magnético.

[editar] Dipolos magnéticos atómicos

La causa física del magnetismo en los cuerpos, distinto a la corriente eléctrica, es por los dipolos atómicos magnéticos. Dipolos magnéticos o momentos magnéticos, en escala atómica resultan de dos tipos diferentes del movimiento de electrones. El primero es el movimiento orbital del electrón sobre su núcleo atómico; este movimiento puede ser considerado como una corriente de bucles, resultando en el momento dipolar magnético del orbital. La segunda, más fuerte, fuente de momento electrónico magnético es debido a las propiedades cuánticas llamadas momento de spin del dipolo magnético (aunque la teoría mecánica cuántica actual dice que los electrones no giran físicamente, ni orbitan el núcleo).


El momento magnético general de un átomo es la suma neta de todos los momentos magnéticos de los electrones individuales. Por la tendencia de los dipolos magnéticos a oponerse entre ellos se reduce la energía neta, en un átomo los momentos magnéticos opuestos de algunos pares de electrones se cancelan entre ellos, ambos en un movimiento orbital y en momentos magnéticos de espín. Así, en el caso de un átomo con orbitales electrónicos o suborbitales electrónicos completamente llenos, el momento magnético normalmente se cancela completamente entre ellos y solo los átomos con orbitales electrónicos semillenos tienen un momento magnético, su fuerza depende del número de electrones impares.

La diferencia en la configuración de los electrones en varios elementos determina la naturaleza y magnitud de los momentos atómicos magnéticos, lo que a su vez determina la diferencia entre las propiedades magnéticas de varios materiales. Existen muchas formas de comportamiento magnético o tipos de magnetismo: el ferromagnetismo, el diamagnetismo y el paramagnetismo; esto se debe precisamente a las propiedades magnéticas de los materiales, por eso se ha estipulado una clasificación respectiva de estos, según su comportamiento ante un campo magnético inducido, como sigue:

[editar] Clasificación de los Materiales Magnéticos

Tipo de MaterialCaracterísticas
No magnéticoNo afecta el paso de las líneas de Campo magnético.
Ejemplo: el Vacío.
DiamagnéticoMaterial débilmente magnético. Si se sitúa una barra magnética cerca de él, esta lo repele.
Ejemplo: Bismuto (Bi), Plata (Ag), Plomo (Pb), Agua.
Paramagnético
Presenta un magnetismo significativo. Atraído por la barra magnética.
Ejemplo: Aire, Aluminio (Al), Paladio (Pd), Magneto Molecular.
FerromagnéticoMagnético por excelencia o fuertemente magnético. Atraído por la barra magnética.
Paramagnético por encima de la temperatura de Curie
(La temperatura de Curie del hierro metálico es aproximadamente unos 770 °C).
Ejemplo: Hierro (Fe), Cobalto (Co), Níquel (Ni), Acero suave.
AntiferromagnéticoNo magnético aun bajo acción de un campo magnético inducido.
Ejemplo: Óxido de Manganeso (MnO2).
FerrimagnéticoMenor grado magnético que los materiales ferromagnéticos.
Ejemplo: Ferrita de Hierro.
SuperparamagnéticoMateriales ferromagnéticos suspendidos en una matriz dieléctrica.
Ejemplo: Materiales utilizados en cintas de audio y video.
FerritasFerromagnético de baja conductividad eléctrica.
Ejemplo: Utilizado como núcleo inductores para aplicaciones de corriente alterna.

[editar] Monopolos magnéticos

Puesto que un imán de barra obtiene su ferromagnetismo de los electrones magneticos microscópicos distribuidos uniformemente a través del imán, cuando un imán es partido a la mitad cada una de las piezas resultantes es un imán más pequeño. Aunque se dice que un imán tiene un polo norte y un polo sur, estos dos polos no pueden separarse el uno del otro.Un monopolo - si tal cosa existe -sería una nueva clase fundamentalmente diferente de objeto magnético. Actuaría como un polo norte aislado, no atado a un polo sur, o viceversa. Los monopolos llevarían "carga magnética" análoga a la carga eléctrica. A pesar de búsquedas sistemáticas a partir de 1931 (como la de 2006), nunca han sido observadas, y muy bien podrían no existir.(ref). Milton menciona algunos eventos no concluyentes (p.60) y aún concluye que "no ha sobrevivido en absoluto ninguna evidencia de monopolos magnéticos".(p.3)

[editar] Tipos de materiales magnéticos

Existen diversos tipos de comportamiento de los materiales magnéticos, siendo los principales el ferromagnetismo, el diamagnetismo y el paramagnetismo.

En los materiales diamagnéticos, la disposición de los electrones de cada átomo es tal que se produce una anulación global de los efectos magnéticos. Sin embargo, si el material se introduce en un campo inducido, la sustancia adquiere una imantación débil y en el sentido opuesto al campo inductor.

Si se sitúa una barra de material diamagnético en el interior de un campo magnético uniforme e intenso, esta se dispone transversalmente respecto de aquel.

Los materiales paramagnéticos no presentan la anulación global de efectos magnéticos, por lo que cada átomo que los constituye actúa como un pequeño imán. Sin embargo, la orientación de dichos imanes es, en general arbitraria, y el efecto global se anula.

Así mismo, si el material paramagnético se somete a la acción de un campo magnético inductor, el campo magnético inducido en dicha sustancia se orienta en el sentido del campo magnético inductor.

Esto hace que una barra de material paramagnético suspendida libremente en el seno de un campo inductor, se alinee con este.

El magnetismo inducido, aunque débil, es suficiente intenso como para imponer al efecto magnético. Para comparar los tres tipos de magnetismo se emplea la razón entre el campo magnético inducido y el inductor.

La rama de la química que estudia las sustancias de propiedades magnéticas interesantes es la magnetoquímica.

[editar] Electromagnetos

Un electroimán es un imán hecho de alambre eléctrico bobinado en torno a un material magnético, como el hierro. Este tipo de imán es útil en los casos en que un imán debe estar encendido o apagado, por ejemplo, las grandes grúas para levantar chatarra de automóviles.

Para el caso de corriente eléctrica se desplazan a través de un cable, el campo resultante se dirige de acuerdo con la "mano derecha regla." Si la mano derecha se utiliza como un modelo, y el pulgar de la mano derecha a lo largo del cable de positivo hacia el lado negativo ( "convencional actual", a la inversa de la dirección del movimiento real de los electrones), entonces el campo magnético recapitulación de todo el cable en la dirección indicada por los dedos de la mano derecha. Como puede observarse geométricamente, en caso de un bucle o hélice de cable está formado de tal manera que el actual es viajar en un círculo, a continuación, todas las líneas de campo en el centro del bucle se dirigen a la misma dirección, lo que arroja un ’magnética dipolo cuya fuerza depende de la actual en todo el bucle, o el actual en la hélice multiplicado por el número de vueltas de alambre. En el caso de ese bucle, si los dedos de la mano derecha se dirigen en la dirección del flujo de corriente convencional (es decir, el positivo y el negativo, la dirección opuesta al flujo real de los electrones), el pulgar apuntará en la dirección correspondiente al polo norte del dipolo. -->

[editar] Magnetos temporales y permanentes

Un imán permanente conserva su magnetismo sin un campo magnético exterior, mientras que un imán temporal sólo es magnético, mientras que esté situado en otro campo magnético. Inducir el magnetismo del acero en los resultados en un imán permanente sino de hierro pierde su magnetismo cuando la inducción de campo se retira. Un imán temporal como el hierro es un material adecuado para los electroimanes. Magnets son hechas por acariciar con otro imán, la grabación, mientras que fija en un campo magnético opuesta dentro de una solenoide bobina se suministra con una corriente directa. Un imán permanente puede ser la remoción de los imanes de someter a la calefacción, fuertes golpes o, colocarlo dentro de un solenoide se suministra con una reducción de corriente alterna.

[editar] Unidades

[editar] Unidades del SI relacionadas con el magnetismo

Tesla [T] = unidad de campo magnetico

Weber [Wb] = unidad de flujo magnetico

Amper [A] = unidad de corriente eléctrica, que genera campos magneticos

[editar] Otras unidades

[editar] Referencias

  1. «Historical Beginnings of Theories of Electricity and Magnetism» (en inglés). Consultado el 31/05/2007.
  2. Li Shu-hua, “Origine de la Boussole 11. Aimant et Boussole,” Isis, Vol. 45, No. 2. (Jul., 1954), p.175
  3. Historia de la física
  4. A. Einstein: "On the Electrodynamics of Moving Bodies", June 30, 1905. http://www.fourmilab.ch/etexts/einstein/specrel/www/.

[editar] Enlaces externos

CIENCIA2: ASTRONOMÍA. EL UNIVERSO MAGNÉTICO. El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético. También el magnetismo tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la onda electromagnética, como, por ejemplo, la luz.

EL UNIVERSO MAGNÉTICO


Javier Armentia
URL: http://javarm.blogalia.com/historias/41044

(Artículo publicado originalmente en la bitácora Por la boca muere el pez)

Puede sorprender saber que una cuarta parte de la radiación que existe en el Universo proviene de la materia que está cayendo en agujeros negros, en concreto en agujeros negros supermasivos que ocupan el interior de galaxias activas y cuásares.

Dejo así la primera frase de un texto que es atrevido, y perdónenme por ello. En un momentito he introducido términos como "agujeros negros", "galaxias activas" y "cuásares" (muchos lectores habrán pensado que la forma que empleo en castellano es un tanto atípica, porque a menudo se puede leer "quasars" o "quasares" o a lo más "cuasares". A mí me gusta cuásares, y como tal voté por ese término como el mejor para ser incluido en la terminología astronómica del dicccionario internacional de astronomía, una magna obra que Josip Kleczek, astrónomo checo que elaboró esa especie de biblia políglota de las ciencias cósmicas para la Unión Astronómica Internacional hace más de 15 años...). Terminologías aparte, una entrada que hable de agujeros negros exigiría, por mor divulgativo, una explicación medianamente pausada por qué es ese término realmente, aparte de las explicaciones populares que incluso lo han introducido en el lenguaje común. Pero me alejaría de la noticia que quiero recoger: tomémoslos como entidades que provienen de las teorías de la física, y que conciben lugares del Universo con un campo gravitatorio tan intenso que un objeto debería superar la velocidad de la luz -algo por otro lado imposible- para escapar de esa atracción. Dado que ni la luz sería capaz de huir de un "hoyo negro" -como suelen traducirlo en Hispanoamérica-, resulta que los agujeros negros son una especie de sumideros absolutos: cualquier cosa que caiga hacia ellos, no escapará y caerá dentro. Sucede que cuando se aproxima uno a un agujero negro, las leyes convencionales de la física -incluso de la física moderna relativista- funcionan de forma un tanto paradójica. Baste por el momento saber que, una vez superado cierto "punto de no retorno", si uno se cae para un agujero negro, no habrá forma de escaparse.

Lejos de las especulaciones teóricas, los agujeros negros existen: desde hace más de 40 años se han identificado objetos celestes cuyo comportamiento sólo puede ser explicado si consideramos que el motor central de lo que observamos es un agujero negro. No hay así observaciones directas, pero sí evidencias suficientes como para concluir que los agujeros negros no son veleidades de la física teórica, sino una completa realidad.

Un punto que necesita explicación antes de que sigamos (y aviso que tenemos que seguir muuuucho más lejos, así que perdonen porque iré dando pasos amplios, confiando en la generosidad del lector): si he hablado de un agujero negro como un sumidero del que nada escapa... ¿cómo es que la primera frase hablaba de la radiación que escapa de ellos? Así es la vida, al menos la vida astrofísica del Universo: cuando la materia va cayendo a un agujero negro, sufre una enorme aceleración gravitatoria que acelera la caída, pero en general también la materia se comprime -también se estirará en la dirección hacia el centro, complicando más la cosa-. Lo más normal es que la materia no caiga directamente -es decir, en línea recta- hacia un agujero negro, sino que se ponga en órbita que va degradándose hacia el interior. No sé si conocen ese típico módulo de muchos museos de ciencia en los que hay una superficie hiperbólica con un agujero en el centro, una especie de sumidero en forma de trompeta. El visitante es invitado a lanzar una moneda o una bola para ponerla en órbita de ese objeto. Pero la órbita no es circular, sino que se degrada en una espiral hacia el interior, que provoca que ese objeto vaya describiendo órbitas cada vez de radio menor hasta llegar a la zona centra -y desaparecer, en el modelo, por el agujero del centro.

Es un buen modelo de esos pozos gravitatorios. Sucede que habitualmente la materia que cae sobre un agujero negro no son bolas o monedas, como en los museos de ciencia, sino que suele ser materia que escapa de una estrella cercana... una especie de chorro que se va enrollando y formando "discos" de materia alrededor del agujero negro. La fricción y el apelotonamiento de esa materia provoca que su densidad y su temperatura se eleve, llegando a superar varios millones de Kelvin (eso que en clase llamábamos "grados absolutos", pero que al hablar de millones no tiene mucha diferencia de los grados Celsius, al menos porcentualmente). La materia tan caliente emite una radiación -térmica- característica, donde abundan los rayos X, e incluso los Gamma (es decir, la luz más energética). De esta forma, muchos agujeros negros son observados por una intensa radiación X que proviene del disco que tiene alrededor de materia cayendo. Históricamente, las primeras detecciones de agujeros negros se produjeron, precisamente, al observar estrellas binarias -dos estrellas ligadas gravitacionalmente- en las cuales una cedía materia que iba cayendo sobre la otra. Pero la otra no era observable como tal estrella... salvo que miráramos con telescopios sensibles a los rayos X: entonces aparecía una intensa fuente de rayos X. Esas "binarias de rayos X" corresponden a sistemas dobles en los cuales la estrella más masiva evolucionó antes (siempre pasa así, aunque justificar esto y explicarlo nos obligaría a todo un capítulo nuevo, y ya decía que no teníamos tiempo para ello), y explotó como supernova (otra historia que deberá ser contada en otro lugar, que diría Ende), y el resto quedó como un supercolapsado objeto... precisamente un agujero negro.

Esos agujeros negros "estelares" no son la única variedad del Universo. De hecho, mucho más normales son los agujeros negros cientos o miles de millones de veces más masivos que una estrella como el Sol que existen en el centro de numerosas galaxias. La nuestra, la Vía Láctea, por ejemplo, tiene en su centro un gran agujero negro a cuyo lado palidecen cualquiera de las binarias de rayos X.

¿Se han dado cuenta de que llevo un montón de párrafos intentando explicar lo que había soltado en la primera frase? Suele pasar, y eso que estoy pasando por encima de un montón de cuestiones que, como cualquier aficionado a estos temas podrá comprobar, exigirían sin duda un relato más detallado. Seguimos en cualquier caso.

Las galaxias presentan una variedad enorme en formas, tamaños, edades, contenido... La nuestra es una galaxia espiral con algo más de 11.000 millones de años de edad. Una larga historia en la que han existido numerosos cambios (otra historia... etc.). Pero es más o menos una galaxia tranquila. Desde hace medio siglo se comenzaron a observar objetos -que se supo que eran galaxias al comprobar su contrapartida en el óptico- en ondas de radio que presentaban una gran emisión. Las ondas de radio son también ondas electromagnéticas, como la luz o los rayos X, pero de menor energía. Poco a poco se fue comprobando que, a menudo, el emisor de ondas de radio era un objeto pequeño, en el centro de la galaxia. Tan pequeño a veces que sólo si pensáramos en un agujero negro podríamos encontrar algo así...

...Lo que nos lleva a volver a revisar lo que comentábamos del término "agujero negro". Ya se dijo que su gravedad es tan intensa que ni siquiera la luz podría escapar. De ahí lo de "negro" (que no afroamericano). Comenté también que la materia cayendo hacia un agujero negro puede provocar una intensa radiación térmica, observable en la zona de altas energías de la luz, en rayos X o gamma. Pero ahora hablamos de radioondas... ¿cómo se come eso? Dejando aparte que un objeto muy caliente también emite ondas de radio (y en todas las frecuencias del espectro), lo cierto es que esa radiación de las galaxias que se denominaron "activas" precisamente por esas emisiones y por la variabilidad que presentaban en las mismas, también se origina cerca del agujero negro, pero no viene exactamente de él.

Y viene otro párrafo, necesario, para explicar que la materia, aparte de estar habitualmente girando (todo gira, que decía Walt Whitman en aquel poema de Conversaciones conmigo mismo -o Canto a mí mismo-), suele tener características magnéticas. Al caer rápidamente, al calentarse, el gas -que es, como le pasa al mismo Universo en su conjunto, en gran parte Hidrógeno, es decir un protón y un electrón ligados- se ioniza. Los electrones pueden ser acelerados en esa vorágine o vórtice, creando intensos campos magnéticos (además de corrientes... cosa que explican las leyes de Maxwell). Los fenómenos son complejos para el lego, pero pueden provocar la creación de chorros de partículas aceleradas a velocidades cercanas a la de la luz que escapan en la dirección de los polos de giro de ese disco en torno al agujero negro. Esos chorros pueden llegar a tener dimensiones colosales, de decenas de miles de años-luz de longitud. En cualquier caso, y para no liarnos demasiado en una historia ya demasiado liada, los electrones acelerados por esa enorme máquina son como partículas atrapadas en un acelerador de partículas, y emiten una luz especial muy diferente de la luz térmica debida a la temperatura de la materia. Se denomina a esa luz "radiación sincrotrón", porque fue observada, precisamente, acelerando electrones que orbitaban en intensos campos magnéticos, en aparatos llamados "sincrotrones".

Con el tiempo, la posibilidad que han ido teniendo los astrónomos de observar con mejor calidad (telescopios más grandes y detectores más sensibles, además de poder observar en rangos más amplios del espectro electromagnétifco) fue permitiendo localizar mejor esas fuentes tan energéticas del interior de las galaxias activas, similares también a los más potentes emisores luminosos de todo el Universo, los cuásares.

Y así, abro un nuevo párrafo para una somera explicación de ese término que dejé caer en la primera frase (si se han perdido, intenten volver hacia atrás... gracias). Históricamente, los cuásares, u "objetos cuasi estelares" fueron todo un misterio por resolver. Se trataba de fuentes muy pequeñas y muy intensas, que al principio parecían un tipo de estrella extraña perteneciente a la Vía Láctea. Pero pronto se vio, al analizar su espectro, que la luz de esos objetos (los QSO en abreviatura en inglés) sólo podría explicarse si considerábamos un objeto que se alejaba muy rápidamente de nosotros, los observadores. Siguiendo la deducción cosmológica aceptada, eso significaba que eran objetos que estaban muy lejos, pero muy muy lejos. De hecho, al echar cuentas, se encontraba que los cuásares eran los objetos más lejanos del Universo.

Otro inciso: un objeto muy muy lejano emite luz que tiene que viajar mucho mucho tiempo hasta llegar a la Tierra. Tanto que es una fracción considerable de la vida del Universo. Tanto que superan a veces la edad de la Vïa Láctea. Paradójicamente (no tanto, si nos ponemos a pensarlo), esa luz que vemos HOY comenzó su viaje hace más de 10.000 millones de años. Es decir, estamos viendo esos objetos tal y como eran hace mucho mucho tiempo. ¿Lo pillan? No es sencillo, pero hay una buena analogía que se suele usar para evitar demasiado dolor de cabeza en momentos como este. Imaginen que estamos viendo un album de fotos de nuestro abuelo. En él aparece una foto de cuando era un tierno infante. Nuestro abuelo tiene un porrón de años ahora, pero la foto nos transmite la imagen de cómo era hace 80 años, por ejemplo. Pues lo mismo pasa al observar un objeto muy lejano: realmente estamos viéndolo tal y como era cuando era muy joven.

La cosa se complica porque, de hecho, hubo en la historia del Universo una época en la que era habitual que existieran esos objetos tan luminosos, los cuásares. Luego fueron más extraños, conforme el Universo se expandía y esas cosas, y de hecho todo el Cosmos se iba haciendo un lugar más tranquilo que antes, más aburrido, por así decirlo (una vez más, esta frase exigiría un capítulo más de una historia que nos llevaría aún más lejos). Por resumir -siendo injustos, mucho resumir- lo que sabemos ahora es que los cuásares son el centro muy activo de galaxias jóvenes que existieron cuando el Universo tenía unos pocos millones de años. El motor de esa luz tan intensa que ha sido capaz de viajar durante más de diez mil millones de años es, una vez más, un agujero negro. Uno "supermasivo", enorme, con una masa equivalente a cientos de millones de veces la masa de nuestro Sol. En aquella época se estaban tragando diáriamente varios soles, y esa materia se calentaba y emitía mucha luz. No es extraño que muchos cuásarses sean, precisamente, grandes emisores de luz de alta energía.

Un alto en el camino. Escribo de nuevo la primera frase de esta entrada: "Puede sorprender saber que una cuarta parte de la radiación que existe en el Universo proviene de la materia que está cayendo en agujeros negros, en concreto en agujeros negros supermasivos que ocupan el interior de galaxias activas y cuásares." Espero que resulte ahora algo más inteligible que la primera vez. La cosa es que, aunque yo todo esto lo he explicado de forma somera y más o menos tangencialmente, desde luego sin hablar el lenguaje de la ciencia, que habría exigido llenar unas cuantas decenas de pizarras de fórmulas más bien complicadas, no es sino un retazo general de toda la historia.

Desde hace años, aunque el "aire" de la cancioncilla de los agujeros negros se comprendía, cuando uno se ponía a hacer cálculos, las observaciones astronómicas no cuadraban del todo. Por ejemplo, el ritmo al que cae la materia y se va calentando cuando lo hace en torno a un agujero negro, formando ese disco y esa espiral de caída no permite explicar adecuadamente el enorme calentamiento que se produce... que es el que provoca, precisamente, la emisión en rayos X. Aplicando modelos más complicados (que involucran una parte de la física denominada magnetohidrodinámica que suma a la complejidad intrínseca de la mecánica de fluidos -hidrodinámica- los efectos provocados por los campos magnéticos, y ya dijimos que a esas temperaturas uno tiene una especie de sopa de electrones y protones en la que las interacciones electromagnéticas están a la orden del día) parecía que las fuerzas que se generan en esas condiciones provocan una mayor fricción a la materia y por lo tanto un mayor calentamiento. Es decir, una mayor emisión en rayos X.

¿Se podría comprobar algo así? Afortunadamente, así es. Por ejemplo, observando con detalle la radiación proveniente de agujeros negros, con una buena resolución en energías (en frecuencias), que nos aporte datos sobre cómo es esa luz provocada por la gravedad tan intensa de un agujero negro.

Hoy mismo, la NASA había convocado una rueda de prensa para hablar de este tema (y por ello, claro, lo hemos traído aquí hoy). El telescopio espacial de rayos X de la NASA, denominado CHANDRA -abreviatura de Chandrasekar, uno de los grandes astrofísicos del siglo pasado que, también, quedó inmortalizado en la saga de las odiseas espaciales de Arthur Clarke- se ha usado para observar cómo es el proceso de acreción (o acrecentamiento) de materia en torno a un agujero negro.

El elegido es el denominado GRO J1655-40 (un nombre que hace referencia al catálogo de fuentes del Gamma Ray Observatory, un telescopio espacial de rayos gamma, aparte de darnos sus coordenadas aproximadas: 16 horas y 55 minutos de ascensión recta y -40 grados de declinación. Explicar estas cosas nos llevaría otro capítulo más, así que ya van comprobando que esta historia podría generar, ella sola, un libro completo). Este agujero negro corresponde a uno de tamaño estelar: es un sistema binario de nuestra Galaxia, como quien dice, al lado de casa. Un equipo dirigido por Jon M. Miller, de la Universidad de Michigan en Ann Arbor (EEUU), ha observado con el telescopio Chandra este objeto, y acaba de publicar sus resultados en Nature.

Las mediciones de la emisión en rayos X de este objeto confirman lo que ya se había observado para otros objetos anteriormente: la gravedad por sí sola no es capaz de comprimir tanto un disco de materia cayendo sobre el agujero negro como para provocar esa emisión X, ni en intensidad ni en componentes espectrales. Los modelos que mejor se ajustan (y lo importante es que la observación de este objeto tenía una gran resolución en frecuencias, algo nada fácil de obtener con telescopios X anteriores, ni de objetos más lejanos y por lo tanto menos luminosos en ese rango de luz) a los datos observacionales son los que utilizan esas complejas interacciones magnetohidrodinámicas... Fïsicamente, lo que sucede es que esa materia que cae en espirales muy densas interactúa con campos magnéticos que son turbulentos, y que generan una especie de viento que barre el disco de materia.

Deberíamos detenernos otra vez para intentar visualizar esos discos en torno a un agujero negro. Pero es aún más complicado que todo lo que han leído hasta ahora. Me atrevo a comentar algo en plan "aquí lo dejo caer, a ver si cuela": uno de los prinicipios de conservación mejor asentados en la física es el del momento angular, esa especie de inercia de giro que tienen las cosas que giran. La visualización habitual de eso del momento angular es una patinadora que gira con los brazos extendidos y que, recogiéndolos gira más rápido. En el caso de un disco en torno a un agujero negro la cosa es más complicada, pero podríamos entender que, en condiciones similares a la de esa patinadora, si la trayectoria espiral lleva a esa materia más cerca del agujero negro, girará más rápidamente. Eso podría, llegado el caso, a disgregar ese disco, perdiéndose la compresión existente que es, recordemos, fundamental para que la materia se caliente mucho y emita rayos X.

Pues bien, son esas turbulencias magnéticas las que generan una onda de presión en la materia del disco, comprimiéndola más aún. Al comprimirse, la temperatura aumenta y con ello la emisión X.

La historia es, y lo siento de veras, pero a veces pasa eso con la astrofísica, aunque siempre queramos contarla en términos sencillos y de andar por casa, mucho -pero mucho mucho- más compleja. Lo cierto es que había diversos modelos teóricos en los que los campos magnéticos provocan diferentes fenómenos en torno a un agujero negro. Para hacernos una idea, contaré que fue en 1973 (hace por lo tanto 33 años, todo un Cristo...) cuando John Raymond planteó por vez primera el efecto de los campos magnéticos ahí. Desde entonces, varios modelos han competido por ser los mejores a la hora de explicar lo observado. Las modelizaciones con superordenadores fueron permitiendo, especialmente en el último decenio, afinar más, e incluir los efectos de turbulencias en los cálculos teóricos.

Ahora, según Miller y sus colaboradores, podemos contar con un modelo más ajustado a lo que sucede en torno a un agujero negro. Y, aplicando estos modelos a los diferentes tipos de agujeros negros, no sólo los pequeñitos de masa estelar, sino hasta los enormes de los cuásares, entender mejor por qué una cuarta parte de la luz del Universo proviene de ellos.

En los últimos años, la mejor capacidad de cálculo, la mayor calidad y variedad de las observaciones, está permitiendo que modelos que incluyen más parámetros, como los campos magnéticos turbulentos y la interacción entre el fluido de partículas cargadas que existe tanto en agujeros negros como en muchos otros objetos del cosmos, puedan proporcionar explicaciones más ajustadas a muchos fenómenos que hasta ahora carecían de explicación.

Obtenido de http://digital.el-esceptico.org/leer.php?id=2320&autor=3&tema=2

CIENCIA2: CLAUDIO PTOLOMEO Y LA TEORÍA DE LAS ESFERAS. Claudio Ptolomeo, en griego, Κλαύδιος Πτολεμαῖος, Klaudios Ptolemaios; (Tolemaida, Tebaida, c. 100 – Cánope, c. 170). Astrónomo, químico, geógrafo y matemático greco-egipcio, llamado comúnmente en español Ptolomeo (o Tolomeo).

Claudio Ptolomeo

De Wikipedia, la enciclopedia libre

Para otros usos de este término, véase Ptolomeo.
 
 
Claudio Ptolomeo, según un grabado alemán del siglo XVI.

Claudio Ptolomeo, en griego, Κλαύδιος Πτολεμαῖος, Klaudios Ptolemaios; (Tolemaida, Tebaida, c. 100Cánope, c. 170). Astrónomo, químico, geógrafo y matemático greco-egipcio, llamado comúnmente en español Ptolomeo (o Tolomeo).

Contenido

[ocultar]

[editar] Biografía

Vivió y trabajó en Egipto (se cree que en la famosa Biblioteca de Alejandría). Fue astrólogo y astrónomo, actividades que en esa época estaban íntimamente ligadas.

[editar] Actividad científica

Ptolomeo realizó aportes en diversas áreas científicas.

[editar] Astronomía

Es autor del tratado astronómico conocido como Almagesto (en griego Hè Megalè Syntaxis, El gran tratado). Se preservó, como todos los tratados griegos clásicos de ciencia, en manuscritos árabes (de ahí su nombre) y sólo se está disponible en la traducción en latín de Gerardo de Cremona en el siglo XII.

Heredero de la concepción del Universo dada por Platón y Aristóteles, su método de trabajo difirió notablemente del de éstos, pues mientras Platón y Aristóteles dan una cosmovisión del Universo, Ptolomeo es un empirista. Su trabajo consistió en estudiar la gran cantidad de datos existentes sobre el movimiento de los planetas con el fin de construir un modelo geométrico que explicase dichas posiciones en el pasado y fuese capaz de predecir sus posiciones futuras.

La ciencia griega tenía dos posibilidades en su intento de explicar la naturaleza: la explicación realista, que consistiría en expresar de forma rigurosa y racional lo que realmente se da en la naturaleza; y la explicación positivista, que radicaría en expresar de forma racional lo aparente, sin preocuparse de la relación entre lo que se ve y lo que en realidad es. Ptolomeo afirma explícitamente que su sistema no pretende descubrir la realidad, siendo sólo un método de cálculo. Es lógico que adoptara un esquema positivista, pues su Teoría geocéntrica se opone flagrantemente a la física aristotélica: por ejemplo, las órbitas de su sistema son excéntricas, en contraposición a las circulares y perfectas de Platón y Aristóteles.

Aunque no perduró ninguna carta de Ptolomeo, en el Renacimiento se reconstruían Mapa Mundi a partir de la Geographia de Ptolomeo. Esta carta es una copia de Johannes de Armsshein, Ulm, en 1482.

Ptolomeo catalogó muchas estrellas asignándoles un brillo y magnitud y estableció criterios para predecir eclipses.

[editar] Modelo de universo geocéntrico

Su aportación fundamental fue su modelo del Universo: creía que la Tierra estaba inmóvil y ocupaba el centro del Universo, y que el Sol, la Luna, los planetas y las estrellas, giraban a su alrededor. A pesar de ello, mediante el modelo del epiciclo-deferente, cuya invención se atribuye a Apolonio, trató de resolver geométricamente los dos grandes problemas del movimiento planetario:

  1. La retrogradación de los planetas y su aumento de brillo mientras retrogradan.
  2. La distinta duración de las revoluciones siderales.

Sus teorías astronómicas geocéntricas tuvieron gran éxito, e influyeron en el pensamiento de astrónomos y matemáticos hasta el siglo XVI.

[editar] Astrología

Y también aplicó el estudio de la astronomía al de la astrología, creando los horóscopos. Todas estas teorías y estudios están escritos en su obra Tetrabiblon.

[editar] Óptica

En el campo de la óptica exploró las propiedades de la luz, sobre todo de la refracción y la reflexión. Su obra Óptica es un tratado sobre la teoría matemática de las propiedades de la luz.

[editar] Geografía

Otra gran obra suya es la Geographia, en que describe el mundo de su época. Utiliza un sistema de latitud y longitud que sirvió de ejemplo a los cartógrafos durante muchos años. Una de las ciudades descrita en esta obra es La Meca, en la Península Arábiga, a la que llama Makoraba.

[editar] Música

El mundo de la música tampoco fue ignorado por Ptolomeo. Escribió un tratado de teoría musical llamado Harmónicos. Pensaba que las leyes matemáticas subyacían tanto los sistemas musicales como en los cuerpos celestes, y que ciertos modos y aun ciertas notas correspondían a planetas específicos, las distancias entre estos y sus movimientos. La idea había sido propuesta por Platón en el mito de la música de las esferas, que es la música no escuchada producida por la revolución de los planetas.[1]

La unión de la música y la poesía es otra concepción griega sobre el género musical. Eran prácticamente sinónimos.

[editar] Otros

También aplicó sus conocimientos de trigonometría a la construcción de astrolabios y relojes de sol.

[editar] Referencias

  1. Platón, República 10.616b-617d (cf. 7.530d); Timeo 35a-36d, 38c-39e (cf. 47b-e, 90c-d).

[editar] Bibliografía

[editar] En español

[editar] En inglés

  • Bagrow, L. 1945. The Origin of Ptolemy's Geographia. Geografiska Annaler 27:318-387.
  • Berggren, J. Lennart and Jones, Alexander. 2000. Ptolemy's Geography: An Annotated Translation of the Theoretical Chapters. Princeton University Press. Princeton and Oxford. ISBN 0-691-01042-0.
  • Campbell, T. 1987. The Earliest Printed Maps, British Museum Press.
  • Nobbe, C. F. A., ed. 1843. Claudii Ptolemaei Geographia. 3 vols. Lipsiae (Leipzig): Carolus Tauchnitus. (The most recent edition of the complete Greek text)
  • Stevenson, Edward Luther. Trans. and ed. 1932. Claudius Ptolemy: The Geography. New York Public Library. Reprint: Dover, 1991. (This is the only complete English translation of Ptolemy's most famous work. Unfortunately, it is marred by numerous mistakes and the placenames are given in Latinised forms, rather than in the original Greek).

[editar] Enlaces externos

CIENCIA2: FÍSICA. VIDEOS DE FÍSICA. La física (del lat. physĭca, y este del gr. τὰ φυσικά, neutro plural de φυσικός) es una ciencia natural que estudia las propiedades del espacio, el tiempo, la materia y la energía, así como sus interacciones. La física es una de las más antiguas disciplinas académicas, tal vez la más antigua a través de la inclusión de la astronomía. En los últimos dos milenios, la física había sido considerada sinónimo de la filosofía, la química, y ciertas ramas de la matemática y la biología, pero durante la Revolución Científica en el siglo XVI surgió para convertirse en una ciencia moderna, única por derecho propio. Sin embargo, en algunas esferas como la física matemática y la química cuántica, los límites de la física siguen siendo difíciles de distinguir. La física es significativa e influyente, no sólo debido a que los avances en la comprensión a menudo se han traducido en nuevas tecnologías, sino también a que las nuevas ideas en la física a menudo resuenan con las demás ciencias, las matemáticas y la filosofía.La física no es sólo una ciencia teórica; es también una ciencia experimental. Como toda ciencia, busca que sus conclusiones puedan ser verificables mediante experimentos y que la teoría pueda realizar predicciones de experimentos futuros. Dada la amplitud del campo de estudio de la física, así como su desarrollo histórico en relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos. La física, en su intento de describir los fenómenos naturales con exactitud y veracidad, ha llegado a límites impensables: el conocimiento actual abarca la descripción de partículas fundamentales microscópicas, el nacimiento de las estrellas en el universo e incluso conocer con una gran probabilidad lo que aconteció en los primeros instantes del nacimiento de nuestro universo, por citar unos pocos campos. Esta tarea comenzó hace más de dos mil años con los primeros trabajos de filósofos

 

CIENCIA2: TECNOLOGÍA. Tecnología el conjunto de conocimientos técnicos, ordenados científicamente, que permiten diseñar y crear bienes o servicios que facilitan la adaptación al medio y satisfacer las necesidades de las personas. Es una palabra de origen griego, τεχνολογία, formada por téchnē (τέχνη, "arte, técnica u oficio") y logía (λογία), el estudio de algo. Aunque hay muchas tecnologías muy diferentes entre sí, es frecuente usar el término en singular para referirse a una de ellas o al conjunto de todas. Cuando se lo escribe con mayúscula, tecnología puede referirse tanto a la disciplina teórica que estudia los saberes comunes a todas las tecnologías, como a educación tecnológica, la disciplina escolar abocada a la familiarización con las tecnologías más importantes. La actividad tecnológica influye en el progreso social y económico, pero también ha producido el deterioro de nuestro entorno (biosfera). Las tecnologías pueden ser usadas para proteger el medio ambiente y para evitar que las crecientes necesidades provoquen un agotamiento o degradación de los recursos materiales y energéticos de nuestro planeta.

Tecnología

De Wikipedia, la enciclopedia libre

Los desarrollos tecnológicos logrados por la humanidad le permitieron abandonar por primera vez la superficie terrestre en la década de 1960, iniciando así la exploración del espacio exterior.

Tecnología el conjunto de conocimientos técnicos, ordenados científicamente, que permiten diseñar y crear bienes o servicios que facilitan la adaptación al medio y satisfacer las necesidades de las personas. Es una palabra de origen griego, τεχνολογία, formada por téchnē (τέχνη, "arte, técnica u oficio") y logía (λογία), el estudio de algo. Aunque hay muchas tecnologías muy diferentes entre sí, es frecuente usar el término en singular para referirse a una de ellas o al conjunto de todas. Cuando se lo escribe con mayúscula, tecnología puede referirse tanto a la disciplina teórica que estudia los saberes comunes a todas las tecnologías, como a educación tecnológica, la disciplina escolar abocada a la familiarización con las tecnologías más importantes.

La actividad tecnológica influye en el progreso social y económico, pero también ha producido el deterioro de nuestro entorno (biosfera). Las tecnologías pueden ser usadas para proteger el medio ambiente y para evitar que las crecientes necesidades provoquen un agotamiento o degradación de los recursos materiales y energéticos de nuestro planeta.

 

Contenido

[ocultar]

[editar] Definición

La versión 1982 del Diccionario de la Real Academia tiene el siguiente concepto de tecnología:

  • 1. Conjunto de los conocimientos propios de un oficio mecánico o arte industrial. Esta acepción era incompleta porque hay tecnologías que no corresponden a oficios mecánicos, como las informáticas. Era ambigua porque sugería una inexistente relación entre tecnologías y artes. Era tautológica porque las que antiguamente se denominaban artes industriales hoy se denominan técnicas, concepto que en el habla cotidiana es sinónimo de tecnología.
  • 2. Tratado de los términos técnicos. Esta acepción se refiere sólo a la terminología técnica, la parte verbalmente expresable de los saberes tecnológicos.
  • 3. Lenguaje propio de una ciencia o de un arte. Esta acepción es similar a la anterior.
  • 4. Conjunto de los instrumentos y procedimientos industriales de un determinado sector o producto. Esta acepción es sólo aplicable a las tecnologías industriales.

La versión 2006 del Diccionario de la Real Academia ha reemplazado la primera acepción por la siguiente:

  • 1. Conjunto de teorías y de técnicas que permiten el aprovechamiento práctico del conocimiento científico. Esta acepción asimila la tecnología a ciencia aplicada o tecno-ciencia, lo que sólo es válido para algunas tecnologías, las basadas en saberes científicos.

Es un error común en muchas páginas Web denominar tecnología, a secas, a la tecnología informática, la tecnología de procesamiento de información por medios artificiales, entre los que se incluye, pero no de modo excluyente, a las computadoras/ordenadores.

En primera aproximación, una tecnología es el conjunto de saberes, destrezas y medios necesarios para llegar a un fin predeterminado mediante el uso de objetos artificiales o artefactos. Esta definición es todavía insuficiente porque no permite diferenciarlas de las artes y las ciencias, para lo cual hay que analizar las funciones y finalidades de las tecnologías.

[editar] Funciones de las tecnologías

Históricamente las tecnologías han sido usadas para satisfacer necesidades esenciales (alimentación, vestimenta, vivienda, protección personal, relación social, comprensión del mundo natural y social), para obtener placeres corporales y estéticos (deportes, música, hedonismo en todas sus formas) y como medios para satisfacer deseos (simbolización de estatus, fabricación de armas y toda la gama de medios artificiales usados para persuadir y dominar a las personas).

A pesar de lo que afirmaban los luditas, y como el propio Marx señalara refiriéndose específicamente a las maquinarias industriales,[1] las tecnologías no son ni buenas ni malas. Los juicios éticos no son aplicables a las tecnologías, sino al uso que hacemos de ellas: un arma puede usarse para matar a una persona y apropiarse de sus bienes o para salvar la vida matando una persona que este atacando a otra.


[editar] Métodos de las tecnologías

Las tecnologías usan, en general, métodos diferentes del científico, aunque la experimentación es también usado por las ciencias. Los métodos difieren según se trate de tecnologías de producción artesanal o industrial de artefactos, de prestación de servicios, de realización u organización de tareas de cualquier tipo.

Un método común a todas las tecnologías de fabricación es el uso de herramientas e instrumentos para la construcción de artefactos. Las tecnologías de prestación de servicios, como el sistema de suministro eléctrico hacen uso de instalaciones complejas a cargo de personal especializado.

[editar] Herramientas e instrumentos

Los principales medios para la fabricación de artefactos son la energía y la información. La energía permite dar a los materiales la forma, ubicación y composición que están descriptas por la información. Las primeras herramientas, como los martillos de piedra y las agujas de hueso, sólo facilitaban la aplicación de fuerza por las personas aplicando los principios de las máquinas simples.[2] El uso del fuego, que modifica la composición de los alimentos haciéndolos más fácilmente digeribles, proporciona iluminación haciendo posible la sociabilidad más allá de los horarios diurnos, proporciona calefacción y mantiene a raya a los animales feroces, modificó tanto la apariencia como los hábitos humanos.

Las herramientas más elaboradas incorporan información : en su funcionamiento, como las pinzas pelacables que permiten cortar la vaina a la profundidad apropiada para arrancarla con facilidad sin dañar el alma metálica. El término instrumentos, en cambio, está más directamente asociado a las tareas de precisión, como en instrumental quirúrgico, y de recolección de información, como en instrumentación electrónica y en instrumentos de medición, de navegación náutica y de navegación aérea.

Las máquinas herramientas son combinaciones complejas de varias herramientas gobernadas (actualmente mediante computadoras/ordenadores) por información obtenida por instrumentos también incorporados en ellas.

[editar] Invención de artefactos

Aunque con grandes variantes de detalle según el objeto, su principio de funcionamiento y los materiales usados en su construcción, las siguientes son etapas usuales en la invención de un artefacto novedoso:

  • Identificación del problema práctico a resolver: En esta etapa deben quedar bien acotados tanto las características intrínsecas del problema, como los factores externos que lo determinan o condicionan. El resultado debe expresarse como una función técnica cuya expresión mínima es la transición, llevada a cabo por el artefacto, de un estado inicial a un estado final. Por ejemplo, en la tecnología de desalinización del agua, el estado inicial es agua en su estado natural, el final es esa agua ya potabilizada, y el artefacto es un desalinizador indefinido. Una de las características críticas es la concentración de sal del agua, muy diferente en el agua oceánica que en mares interiores como el Mar Muerto. Los factores externos son, por ejemplo, las temperaturas máxima y mínima del agua en las diferentes estaciones y las fuentes de energía disponibles para la operación del desalinizador.
  • Establecimiento de los requisitos que debe cumplir la solución: Materiales admisibles; cantidad y calidad de mano de obra a usar y su disponibilidad; costos máximos de fabricación, operación y mantenimiento; duración mínima requerida del artefacto...
  • Principio de funcionamiento: Frecuentemente hay varias maneras diferentes de resolver un mismo problema, más o menos apropiados al entorno natural o social. En el caso de la desalinización, el procedimiento de congelación es especialmente apto para las regiones árticas, mientras que el de ósmosis inversa lo es para ciudades de regiones tropicales con amplia disponibilidad de energía eléctrica. La invención de un nuevo principio de funcionamiento es una de las características cruciales de la innovación tecnológica. La elección del principio de funcionamiento, sea ya conocido o especialmente inventado, es el requisito indispensable para la siguiente etapa, el diseño que precede a la construcción.
  • Diseño del artefacto: Mientras que en la fabricación artesanal lo usual es omitir esta etapa y pasar directamente a la etapa siguiente de construcción de un prototipo (método de ensayo y error), el diseño es requisito obligatorio de todos los procesos de fabricación industrial. Este diseño se efectúa típícamente usando saberes formalizados como los de alguna rama de la ingeniería, efectuando cálculos matemáticos, trazando planos de diverso tipo, eligiendo materiales de propiedades apropiadas o haciendo ensayos cuando se las desconoce, compatibilizando la forma de los materiales con la función a cumplir, descomponiendo el artefacto en partes que faciliten tanto el cumplimiento de la función como la fabricación y ensamblado...
  • Simulación o construcción de un prototipo: Si el costo de fabricación de un prototipo no es excesivamente alto (donde el tope sea probablemente el caso de un nuevo modelo de automóvil) su fabricación permite detectar y resolver problemas no previstos en la etapa de diseño. Cuando el costo no lo permite, caso del desarrollo de un nuevo tipo de avión, se usan complejos programas de simulación por ordenador/computadora, donde un ejemplo simple es la determinación de las características aerodinámicas usando un modelo a escala en un túnel de viento.

Según el divulgador científico Asimov:[3]

Inventar exigía trabajar duro y pensar firme. Edison sacaba inventos por encargo y enseñó a la gente que no eran cuestión de fortuna ni de conciliábulo de cerebros. Porque -aunque es cierto que hoy disfrutamos del fonógrafo, del cine, de la luz eléctrica, del teléfono y de mil cosas más que él hizo posibles o a las que dio un valor práctico- hay que admitir que, de no haberlas inventado él, otro lo hubiera hecho tarde o temprano: eran cosas que «flotaban en el aire». Quizás no sean los inventos en sí lo que hay que destacar entre los aportes de Edison a nuestras vidas. La gente creía antes que los inventos eran golpes de suerte. El genio, decía Edison, es un uno por ciento de inspiración y un noventa y nueve por ciento de transpiración. No, Edison hizo algo más que inventar, y fue dar al proceso de invención un carácter de producción en masa.

Guilford, destacado estudioso de la psicología de la inteligencia,[4] identifica como las principales destrezas de un inventor las incluidas en lo que denomina aptitudes de producción divergente. La creatividad, facultad intelectual asociada a todas las producciones originales, ha sido discutida por de Bono, quien la denomina pensamiento lateral.[5] Aunque más orientado a las producciones intelectuales, el más profundo estudio sobre la resolución de problemas cognitivos es hecho por Newell y Simon, en el celebérrimo libro Human problem solving.[6]

Véase también: Creatividad

[editar] Hitos del desarrollo tecnológico

Artículo principal: Historia de la tecnología

[editar] Algunos hitos tecnológicos prehistóricos

Herramientas de piedra inuit.

Muchas tecnologías han sido inventadas de modo independiente en diferentes lugares y épocas; se cita a continuación sólo la más antigua invención conocida.

  • Armas y herramientas de piedra: Hechas de piedras toscamente fracturadas, fueron usadas por los primeros homínidos hace más de 1.000.000 de años en África. Las armas permitieron el auge de la caza de animales salvajes, ventajosa para la alimentación por su mayor contenido en proteínas. Las herramientas facilitaron el troceado de los animales, el trabajo del cuero, el hueso y la madera produciendo los primeros cambios sustanciales de la forma de vida.[7]
Trilla del trigo en el Antiguo Egipto.
  • Encendido de fuego: Aunque el fuego fue usado desde tiempos muy remotos, no hay evidencias de su encendido artificial, seguramente por fricción, hasta alrededor de 200.000 a. C. El uso del fuego permitió: protegerse mejor de los animales salvajes, que invariablemente le temen; prolongar las horas de trabajo útil, con el consiguiente incremento de relación social; migrar a climas más fríos, usándolo como calefacción para las moradas; cocinar los alimentos, haciéndolos más fáciles de digerir y masticar. A esta última característica atribuyen algunos antropólogos la modificación de la forma de la mandíbula humana, menos prominente que la de los restantes primates.[8]
  • Cestería: No se sabe con certeza cuando se inició, por ser un material de fácil descomposición. Se presume que fue anterior a la alfarería y la base de ésta cuando los canastos de fibras o varillas se recubrieron con arcilla para impermeabilizarlos. Las cestas fueron probablemente los primeros recipientes y medios de transporte de alimentos y otros objetos pequeños.
Tejedora aymara del imperio incaico, según Guaman Poma.
  • Metalurgia del cobre: Alrededor del 7.000 a. C., en Turquía.[10] El cobre fue, en casi todas partes, el primer metal usado por encontrarse naturalmente en estado puro. Aunque es demasiado blando para hacer herramientas durables, las técnicas desarrolladas dieron las bases para el uso del bronce, primero, y del hierro, después.
  • Domesticación de cabras y ovejas: Alrededor del 7.000 a. C. en Anatolia y Persia. La tecnología de domesticación de animales permitió, por selección artificial, obtener las características más convenientes para el uso humano (carne, grasa, leche, fibras, cerdas, cuero, cornamentas, huesos...).[11]
Tableta con escritura cuneiforme de la colección Kirkor Minassian.
  • Tejidos de fibras animales y vegetales: Hechos con telares rudimentarios hace aproximadamente unos 5.000 años, en Anatolia, el Levante mediterráneo y Egipto. El enorme tiempo necesario para el hilado y tejido manual de fibras fue el gran problema que resolvió la Revolución industrial con la invención de los telares mecánicos. Los materiales difíciles de conseguir, como la seda, las elaboradas técnicas de teñido y de decoración de vestimentas, hicieron de éstas símbolos de estatus social. Este fue probablemente, junto con la disponibilidad de armas de metal, uno de los primeros usos simbólicos de las tecnologías (riqueza e indestructibilidad, respectivamente).
  • Carro con ruedas: La más antigua representación de un carro con ruedas es la del cuenco de Bronocice. Data de alrededor del 3.500 a. C., en la región del Cáucaso. No se sabe con certeza si su función como arma de guerra precedió a la de medio de transporte.

Con la invención de la escritura se inician el período histórico y los procesos sistemáticos de transmisión de información y de análisis racional de las tecnologías, procesos cuya muy posterior culminación sería el surgimiento de las ciencias.

[editar] Algunos hitos tecnológicos históricos

La siguiente es una breve selección de algunas tecnologías que han tenido un fuerte impacto, muy brevemente descripto, sobre las actividades humanas.

El cuenco de Bronocice (Museo Arqueológico de Cracovia).
  • Domesticación del caballo: Alrededor del 3.000 a. C., en las estepas del sur de Eurasia. La ampliación del radio de acción y de la capacidad de transporte, así como su eficacia como arma de guerra, produjeron enormes modificaciones sociales en las culturas que incorporaron el caballo (denominadas culturas ecuestres), produciendo su transición de la vida pastorial a la guerrera.[13]
  • Fabricación del vidrio: Alrededor del 3.000 a. C., en Egipto.[14] A pesar de la sencillez de su fabricación fue inicialmente usado sólo para fabricar vajilla, en especial copas o vasos, y objetos para el culto religioso. Su uso en ventanas es muy posterior y fue hecho inicialmente sólo por los ricos.
Ábaco chino tradicional.
  • Ábaco: Primera calculadora mecánica, inventado con el nombre suan-pan' en la corte del Emperador de China Hsi Ling-shi, alrededor del año 2650 a. C. El invento, contemporáneo del primer libro conocido de aritmética, el Kieuo-chang, se atribuye al Primer Ministro Cheo'u-ly.[16]
  • Metalurgia del hierro: Hay trabajos de forjado del hierro de meteoros, pero su primera obtención por fusión de minerales fue sistemáticamente hecha recién alrededor del 2.300 a. C. en India, Mesopotamia y Asia Menor. Las armas y herramientas de hierro tienen resistencia y duración muy superiores a las de piedra. Su seguramente accidental aleación con el carbono dio origen al acero, actualmente el material de construcción por excelencia.[17]
Caja moderna de tipos móviles, heredera de la de Gutenberg.
  • Imprenta de Gutenberg: La técnica de impresión con bloques de madera ya era conocida por los chinos en el siglo III a. C.[19] El método era práctico sólo para la impresión de pocos ejemplares de impresos de gran valor, como láminas artísticas. Johannes Gensfleisch zur Laden, más conocido como Johannes Gutenberg, desarrolló entre 1437 y 1447 un método más durable y económico, capaz de grandes tiradas, basado en tipos de metal fácilmente reemplazables. En la imprenta de Gutenberg se imprimió por primera vez la Biblia, que antes debía ser trabajosamente copiada a mano.[20] La generalización de la imprenta abrió el camino de la Reforma Protestante, divulgó saberes antes reservados sólo para grupos selectos y sentó las bases de la sociedad de la información en la que hoy vivimos.
Los "huesos" de Napier.
  • Regla de cálculo: Año 1594, Escocia (Gran Bretaña). John Napier o Neper inventa reglillas calibradas de modo logarítmico para reducir las multiplicaciones y divisiones a sumas y restas. La regla de cálculo y el ábaco (que la precedió en varios siglos) fueron los primeros dispositivos mecánicos de cálculo numérico.]].[21]
  • Telar automático: En 1725 el francés Basile Bouchon construye el primer telar donde se controlan los hilos de la urdimbre con cintas de papel perforadas, permitiendo repetir complejos diseños sin errores. En 1728, en Lyon, el tejedor de seda francés Falcon perfecciona el telar de Bouchon reemplazando las frágiles cintas de papel por tarjetas perforadas de cartón. El hábil ingeniero francés Jacques Vaucanson perfecciona poco después el dispositivo, pero es aún demasiado complejo para ser práctico. En 1807 el francés Joseph-Marie Jacquard construye un telar práctico totalmente automático. Nació así el primer dispositivo mecánico completamente programable, remoto antecesor de las modernas computadoras.[22]
Máquina de vapor de Watt en la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid.
  • Celuloide: En 1860 el químico estadounidense John Wesley Hyatt inventó el primer plástico artificial (la madera, el cuero y el caucho, por ejemplo, son plásticos naturales), un nitrato de celulosa denominado celuloide. A partir de ese momento se multiplicó la invención de materiales plásticos, los más usados hoy junto con los metales. La facilidad con que se les puede dar las formas, colores y texturas más variadas, los hace materiales irremplazable en la fabricación de artefactos de todo tipo.[26]
Versión moderna del motor de cuatro tiempos de Otto.
  • Transistor. Los estudios teóricos de Julius Lilienfeld sentaron las bases de la comprensión del comportamiento eléctrico de los materiales semiconductores.[29] En 1939 Walter Schottky describió el efecto de las uniones PN de semiconductores deliberadamente impurificadas, terminando de sentar las bases teóricas para la invención del transistor. En 1948, tras 20 años de investigaciones, John Bardeen, Walter House Brattain y William Shockley construyeron el primer prototipo operativo del transistor en los laboratorios de la empresa Bell. El dispositivo reemplazó pronto a al tríodo, hasta entonces usado para modular y amplificar corrientes eléctricas, debido a su pequeño tamaño y consumo, y al bajo costo de su fabricación en masa. El transistor y otros componentes derivados de él, como los fototransistores, revolucionaron la electrónica, miniaturizándola y haciéndola portátil, es decir, utilizable en cualquier lugar.[30]

[editar] Economía y tecnologías

Las tecnologías, aunque no son objetos específicos de estudio de la Economía, han sido a lo largo de toda la historia y son actualmente parte imprescindible de los procesos económicos, es decir, de la producción e intercambio de cualquier tipo de bienes y servicios. Desde el punto de vista de los productores de bienes y de los prestadores de servicios, las tecnologías son el medio indispensable para obtener renta. Desde el punto de vista de los consumidores, las tecnologías les permiten obtener mejores bienes y servicios, usualmente (pero no siempre) más baratos que los equivalentes del pasado. Desde el punto de vista de los trabajadores, las tecnologías disminuyen los puestos de trabajo al reemplazarlos crecientemente con máquinas. Estas complejas y conflictivas características de las tecnologías requieren estudios y diagnósticos, pero fundamentalmente soluciones políticas mediante la adecuada regulación de la distribución de las ganancias que generan.

Archivo:Joseph Alois Schumpeter.jpg
Joseph Alois Schumpeter.

[editar] Teoría económica

Artículo principal: Microeconomía

La mayoría de las teorías económicas da por sentada la disponibilidad de las tecnologías. Schumpeter es uno de los pocos economistas que asignó a las tecnologías un rol central en los fenómenos económicos. En sus obras señala que los modelos clásicos de la economía no pueden explicar los ciclos periódicos de expansión y depresión, como los de Kondratiev, que son la regla más que la excepción. El origen de estos ciclos, según Schumpeter, es la aparición de innovaciones tecnológicas significativas (como la introducción de la iluminación eléctrica domiciliaria por Edison o la del automóvil económico por Ford) que generan una fase de expansión económica. La posterior saturación del mercado y la aparición de empresarios competidores cuando desaparece el monopolio temporario que da la innovación, conducen a la siguiente fase de depresión. El término empresario schumpeteriano es hoy corrientemente usado para designar a los empresarios innovadores que hacen crecer su industria gracias a su creatividad, capacidad organizativa y mejoras de eficiencia.[31]

[editar] Industria

Artículo principal: Industria
Brazo robot soldador.

La producción de bienes requiere la recolección, fabricación o generación de todos sus insumos. La obtención de la materia prima inorgánica requiere las tecnologías mineras La materia prima orgánica (alimentos, fibras textiles...) requiere de tecnologías agrícolas y ganaderas. Para obtener los productos finales la materia prima debe ser procesada en instalaciones industriales de muy variado tamaño y tipo, donde se ponen en juego toda clase de tecnologías, incluida la imprescindible generación de energía.

[editar] Servicios

Artículo principal: Servicio

Hasta los servicios personales requieren de las tecnologías para su buena prestación. Las ropas de trabajo, los útiles, los edificios donde se trabaja, los medios de comunicación y registro de información son productos tecnológicos. Servicios esenciales como la provisión de agua potable, tecnologías sanitarias, electricidad, eliminación de residuos, barrido y limpieza de calles, mantenimiento de carreteras, teléfonos, gas natural, radio, televisión... no podrían brindarse sin el uso intensivo de múltiples tecnologías.

Las tecnologías de las telecomunicaciones, en particular, han experimentado enormes progresos a partir de la instalación en órbita de los primeros satélites de comunicaciones, del aumento de velocidad, memoria y disminución de tamaño de las/los computadoras/ordenadores, de la miniaturización de circuitos electrónicos (circuitos integrados, de la invención de los teléfonos celulares. Esto permite comunicaciones casi instantáneas entre dos puntos cualesquiera del planeta, pero la mayor parte de la población todavía no tiene acceso a ellas.

[editar] Comercio

Artículo principal: Comercio

El comercio moderno, medio principal de intercambio de mercancías (productos tecnológicos), no podría llevarse a cabo sin las tecnologías del transporte fluvial, marítimo, terrestre y aéreo. Estas tecnologías incluyen tanto los medios de transporte (barcos, automotores, aviones...), como también las vías de transporte y todas las instalaciones y servicios necesarios para su eficaz realización: puertos, grúas de carga y descarga, carreteras, puentes, aeródromos, radares, combustibles... El valor de los fletes, consecuencia directa de la eficiencia de las tecnologías de transporte usadas, ha sido desde tiempos remotos y sigue siendo hoy uno de los principales condicionantes del comercio.

[editar] Recursos naturales

Artículo principal: Recurso natural

Un país con grandes recursos naturales será pobre si no tiene las tecnologías necesarias para su ventajosa explotación, lo que requiere una enorme gama de tecnologías de infraestructura y servicios esenciales. Asimismo, un país con grandes recursos naturales bien explotados tendrá una población pobre si la distribución de ingresos no permite a ésta un acceso adecuado a las tecnologías imprescindibles para la satisfacción de sus necesidades básicas. En la actual economía capitalista, el único bien de cambio que tiene la mayoría de las personas para la adquisición de los productos y servicios necesarios para su supervivencia es su trabajo. La disponibilidad de trabajo, condicionada por las tecnologías, es hoy una necesidad humana esencial.

[editar] Trabajo

Si bien las técnicas y tecnologías también son parte esencial del trabajo artesanal, el trabajo fabril introdujo variantes tanto desde el punto de vista del tipo y propiedad de los medios de producción, como de la organización y realización del trabajo de producción. El alto costo de las máquinas usadas en los procesos de fabricación masiva, origen del capitalismo, tuvo como consecuencia que el trabajador perdiera la propiedad, y por ende el control, de los medios de producción de los productos que fabricaba.[32] Perdió también el control de su modo de trabajar, de lo que es máximo exponente el taylorismo.

[editar] Taylorismo

Artículo principal: Taylorismo

Rodrigo Luna: Según Frederick W. Taylor, la organización del trabajo fabril debía eliminar tanto los movimientos inútiles de los trabajadores —por ser consumo innecesario de energía y de tiempo— como los tiempos muertos —aquellos en que el obrero estaba ocioso. Esta "organización científica del trabajo", como se la llamó en su época, disminuía la incidencia de la mano de obra en el costo de las manufacturas industriales, aumentando su productividad. Aunque la idea parecía razonable , no tenía en cuenta las necesidades de los obreros y fue llevada a límites extremos por los empresarios industriales. La reducción de las tareas a movimientos lo más sencillos posibles se usó para disminuir las destrezas necesarias para el trabajo, transferidas a máquinas, reduciendo en consecuencia los salarios y aumentando la inversión de capital y lo que Karl Marx denominó la plusvalía. Este exceso de especialización hizo que el obrero perdiera la satisfacción de su trabajo, ya que la mayoría de ellos nunca veía el producto terminado. Asimismo, llevada al extremo, la repetición monótona de movimientos generaba distracción, accidentes, mayor ausentismo laboral y pérdida de calidad del trabajo.[33] Las tendencias contemporáneas, una de cuyas expresiones es el toyotismo, son de favorecer la iniciativa personal y la participación en etapas variadas del proceso productivo (flexibilización laboral), con el consiguiente aumento de satisfacción, rendimiento y compromiso personal en la tarea.

[editar] Fordismo

Artículo principal: Fordismo

Henry Ford, el primer fabricante de automóviles que puso sus precios al alcance de un obrero calificado, logró reducir sus costos de producción gracias a una rigurosa organización del trabajo industrial. Su herramienta principal fue la cadena de montaje que reemplazó el desplazamiento del obrero en busca de las piezas al desplazamiento de éstas hasta el puesto fijo del obrero. La disminución del costo del producto se hizo a costa de la transformación del trabajo industrial en una sencilla tarea repetitiva, que resultaba agotadora por su ritmo indeclinable y su monotonía. La metodología fue satirizado por el actor y director inglés Charles Chaplin en su clásico film Tiempos modernos y hoy estas tareas son hechas por robots industriales.

La técnica de producción en serie de grandes cantidades de productos idénticos para disminuir su precio está perdiendo gradualmente validez a medida que las maquinarias industriales son crecientemente controladas por computadoras que permiten variar con bajo costo las características de los productos. Éste es, por ejemplo, el caso del corte de prendas de vestir, aunque siguen siendo mayoritariamente cosidas por costureras con la ayuda de máquinas de coser individuales en puestos fijos de trabajo.[33]

[editar] Toyotismo

Artículo principal: Toyotismo

El toyotismo, cuyo nombre proviene de la fábrica de automóviles Toyota, su creadora, modifica las características negativas del fordismo. Se basa en la flexibilidad laboral, el fomento del trabajo en equipo y la participación del obrero en las decisiones productivas. Desde el punto de vista de los insumos, disminuye el costo de mantenimiento de inventarios ociosos mediante el sistema just in time, donde los componentes son provistos en el momento en que se necesitan para la fabricación. Aunque mantiene la producción en cadena, reemplaza las tareas repetitivas más agobiantes, como la soldadura de chasis, con robots industriales.[34]

[editar] La desaparición y creación de puestos de trabajo

Uno de los instrumentos de que dispone la Economía para la detección de los puestos de trabajos eliminados o generados por las innovaciones tecnológicas es la matriz insumo-producto (en inglés, input-output matrix) desarrollada por el economista Wassily Leontief, cuyo uso por los gobiernos recién empieza a difundirse.[35] La tendencia histórica es la disminución de los puestos de trabajo en los sectores económicos primarios ( agricultura, ganadería, pesca, silvicultura) y secundarios (minería, industria, energía y construcción) y su aumento en los terciarios (transporte, comunicaciones, servicios, comercio, turismo, educación, finanzas, administración, sanidad). Esto plantea la necesidad de medidas rápidas de los gobiernos en reubicación de mano de obra, con la previa e indispensable capacitación laboral.

[editar] Publicidad

La mayoría de los productos tecnológicos se hacen con fines de lucro y su publicidad es crucial para su exitosa comercialización. La publicidad -que usa recursos tecnológicos como la imprenta, la radio y la televisión- es el principal medio por el que los fabricantes de bienes y los proveedores de servicios dan a conocer sus productos a los consumidores potenciales.

Idealmente la función técnica de la publicidad es la descripción de las propiedades del producto, para que los interesados puedan conocer cuan bien satisfará sus necesidades prácticas y si su costo está o no a su alcance. Esta función práctica se pone claramente de manifiesto sólo en la publicidad de productos innovadores cuyas características es imprescindible dar a conocer para poder venderlos. Sin embargo, usualmente no se informa al usuario de la duración estimada de los artefactos o el tiempo de mantenimiento y los costos secundarios del uso de los servicios, factores cruciales para una elección racional entre alternativas similares.

Son particularmente engañosas las publicidades de sustancias que proporcionan alguna forma de placer, como los cigarrillos y el vino. En algunos países, el alto costo que causan en servicios de salud o de atención de accidentes, hizo que se obligara a advertir en sus envases los riesgos que acarrea su consumo. Sus abundantes publicidades, aunque lleven la advertencia en letra chica, nunca mencionan la función técnica de estos productos de cambiar la percepción de la realidad; centran en cambio sus mensajes en asociar su consumo con el placer, el éxito y el prestigio.

[editar] Impactos de la tecnología

¿Somos lo que producimos? (óleo de Giuseppe Arcimboldo, circa 1563).

La elección, desarrollo y uso de tecnologías puede tener impactos muy variados en todos los órdenes del quehacer humano y sobre la naturaleza. Uno de los primeros investigadores del tema fue McLuhan, quien planteó las siguientes cuatro preguntas a contestar sobre cada tecnología particular:[36]

  • ¿Qué genera, crea o posibilita?
  • ¿Qué preserva o aumenta?
  • ¿Qué recupera o revaloriza?
  • ¿Qué reemplaza o deja obsoleto?

Este cuestionario puede ampliarse para ayudar a identificar mejor los impactos, positivos o negativos, de cada actividad tecnológica tanto sobre las personas como sobre su cultura, su sociedad y el medio ambiente:[37]

  • Impacto práctico: ¿Para qué sirve? ¿Qué permite hacer que sin ella sería imposible? ¿Qué facilita?
  • Impacto simbólico: ¿Qué simboliza o representa? ¿Qué connota?
  • Impacto tecnológico: ¿Qué objetos o saberes técnicos preexistentes lo hacen posible? ¿Qué reemplaza o deja obsoleto? ¿Qué disminuye o hace menos probable? ¿Qué recupera o revaloriza? ¿Qué obstáculos al desarrollo de otras tecnologías elimina?
  • Impacto ambiental: ¿El uso de qué recursos aumenta, disminuye o reemplaza? ¿Qué residuos o emanaciones produce? ¿Qué efectos tiene sobre la vida animal y vegetal?
  • Impacto ético: ¿Qué necesidad humana básica permite satisfacer mejor? ¿Qué deseos genera o potencia? ¿Qué daños reversibles o irreversibles causa? ¿Qué alternativas más beneficiosas existen?
  • Impacto epistemológico: ¿Qué conocimientos previos cuestiona? ¿Qué nuevos campos de conocimiento abre o potencia?

[editar] Funciones no técnicas de los productos tecnológicos

Después de un tiempo, las características novedosas de los productos tecnológicos son copiadas por otras marcas y dejan de ser un buen argumento de venta. Toman entonces gran importancia las creencias del consumidor sobre otras características independientes de su función principal, como las estéticas y simbólicas.

[editar] Función estética de los objetos tecnológicos

Más allá de la indispensable adecuación entre forma y función técnica, se busca la belleza a través de las formas, colores y texturas. Entre dos productos de iguales prestaciones técnicas y precios, cualquier usuario elegirá seguramente al que encuentre más bello. A veces, caso de las prendas de vestir, la belleza puede primar sobre las consideraciones prácticas. Frecuentemente compramos ropa bonita aunque sepamos que sus ocultos detalles de confección no son óptimos, o que su duración será breve debido a los materiales usados. Las ropas son el rubro tecnólogico de máxima venta en el planeta porque son la cara que mostramos a las demás personas y condicionan la manera en que nos relacionamos con ellas.

[editar] Función simbólica de los objetos tecnológicos[38]

Cuando la función principal de los objetos tecnológicos es la simbólica, no satisfacen las necesidades básicas de las personas y se convierten en medios para establecer estatus social y relaciones de poder.

Las joyas hechas de metales y piedras preciosas no impactan tanto por su belleza (muchas veces comparable al de una imitación barata) como por ser claros indicadores de la riqueza de sus dueños. Las ropas costosas de primera marca han sido tradicionalmente indicadores del estatus social de sus portadores. En la América colonial, por ejemplo, se castigaba con azotes al esclavo o liberto africano que usaba ropas españolas por pretender ser lo que no es.

El caso más destacado y frecuente de objetos tecnológicos fabricados por su función simbólica es el de los grandes edificios: catedrales, palacios, rascacielos gigantes. Están diseñados para empequeñecer a los que están en su interior (caso de los amplios atrios y altísimos techos de las catedrales), deslumbrar con exhibiciones de lujo (caso de los palacios), infundir asombro y humildad (caso de los grandes rascacielos). No es casual que los terroristas del 11 de septiembre de 2001 eligieran como blanco principal de sus ataques a las Torres Gemelas de Nueva York, sede de la Organización Mundial de Comercio y símbolo del principal centro del poderío económico estadounidense.

El Proyecto Apolo fue lanzado por el Presidente John F. Kennedy en el clímax de la Guerra Fría, cuando EEUU estaba aparentemente perdiendo la carrera espacial frente a los rusos, para demostrar al mundo la inteligencia, riqueza, poderío y capacidad tecnológica de los EEUU. Con las pirámides de Egipto, es el más costoso ejemplo del uso simbólico de las tecnologías.

[editar] Cultura y tecnologías

Preguntas de McLuhan sobre el impacto cultural de una tecnología.

Cada cultura distribuye de modo diferente la realización de las funciones y el usufructo de sus beneficios. Como la introducción de nuevas tecnologías modifica y reemplaza funciones humanas, cuando los cambios son suficientemente generalizados puede modificar también las relaciones humanas, generando un nuevo orden social. Las tecnologías no son independientes de la cultura, integran con ella un sistema socio-técnico inseparable. Las tecnologías disponibles en una cultura condicionan su forma de organización, así como la cosmovisión de una cultura condiciona las tecnologías que está dispuesta a usar.

En su libro Los orígenes de la civilización el historiado Vere Gordon Childe ha desarrollado detalladamente la estrecha vinculación entre la evolución tecnológica y la social de las culturas occidentales, desde sus orígenes prehistóricos. Marshall McLuhan ha hecho lo propio para la época contemporánea en el campo más restringido de las tecnologías de las telecomunicaciones.[39]

[editar] Impacto de la tecnología en la sociedad

Introducción

La tecnología ha aportado grandes beneficios al ser humano, desde la invención de aparatos y dispositivos para la detección y diagnostico de enfermedades, la creación y mejoramiento de herramientas o accesorios que son útiles para simplificar el trabajo en hogar. También en el área empresarial ha evolucionado con la incorporación de innovaciones tecnológicas en sus procesos. Por otro lado, los avances tecnológicos han sido manipulados para obedecer intereses particulares. La innovación tecnológica en las empresas ha provocado que la automatización de procesos sustituya a los trabajadores, generando desempleo. Los colectivos a los que afecta: de una manera u otra la sociedad compleja se ha visto afectada por una evolución gigantesca de los medios tecnológicos.

Tercera edad VS sociedad infantil

Analizando la tecnología para cada tipo de sociedad podemos decir que, por ejemplo, existe un vacío en la sociedad para los adultos mayores. Según artículos relacionados, la tercera edad se va sintiendo cada vez más apartada a medida que la tecnología ocupa un lugar más relevante en la vida cotidiana de las personas, así lentamente estas personas se ven cada vez más alejados de incrementar sus capacidades comunicacionales al no poder manipular estos nuevos aparatos tecnológicos.

Por otro lado está la sociedad infantil y juvenil que es quien domina estos cambios. Este tema es de interés social porque la tecnología forma parte de nuestras vidas, sobre todo en el plano profesional. Es calificado como un instrumento de supervivencia, y es que la sociedad debe seguir sus pasos para seguir formando parte de esta comunidad determinante. La hace relevante por el debate social que genera, y es que cada vez más la evolución tecnológica hace que se diferencien más unas sociedades de otras.

Esta sociedad juvenil utiliza la tecnología como un instrumento indispensable en la vida diaria. Las instituciones son una fuente importante para acercar este avance a los distintos tipos de sociedad, es que los ordenadores son ya una tecnología tan indispensable como una pizarra o un libro en las aulas educativas. Ya desde pequeños se les va ilustrando y educando en base a una nueva etapa tecnológica.

Su influencia en el ámbito profesional

A su vez, este avance condiciona a la sociedad a tener que aprender cada día. En el plano profesional la cosa cambia para aquellos que no estén bien formados y cualificados para manejar esta nueva etapa, y es que tendrá más dificultades para el acceso a un puesto de trabajo digno. Pero la nueva economía digital para subsistir y desarrollarse no sólo necesita de trabajadores, sino y sobre todo de consumidores formados en el manejo de las máquinas digitales. Aquí podemos ver un nuevo tipo de consumidor, cualificado y formado eficazmente para el consumo de aparatos tecnológicos novedosos. Sin consumidores digitales no habrá crecimiento de este sector productivo. En este sentido, a diferencia de épocas precedentes, el consumo no sólo precisa de sujetos con un cierto nivel de renta que les permita adquirir las mercancías, sino también que éstos estén cualificados para comprar a través de máquinas y redes de ordenadores.

La oferta actual de empleo abandona los esquemas tradicionales, demasiado orientados a darles prioridad a los títulos académicos, y evoluciona paulatinamente hacia la búsqueda de nuevos perfiles y de nuevos profesionales que posean un currículo formativo y una experiencia real más cercana y apropiada a la evolución tecnológica. Aquí se plasma la idea de reducción del personal, y es que las máquinas hacen reducir el trabajo físico a la sociedad.

Tipos de sociedad frente a la tecnología

Observando el comportamiento de la sociedad vemos claramente dos posiciones enfrentadas, mientras que para los que se encuentran reacios al cambio la tecnología supone un medio que destruye la capacidad del hombre; para los entusiastas del avance tecnológico, supone un avance más en un mundo de nuevos inventos e investigaciones.

Ambos perfiles se han visto influidos de alguna manera por esta nueva etapa tecnológica, pero cada uno la ha acogido de una manera diferente. Para los entusiastas de las nuevas tecnologías, la ven como un instrumento que facilita el mundo laboral y la forma de acceder a cualquier contenido, una nueva manera de desarrollar un trabajo sin gastar mucho tiempo y esfuerzo físico. Por lo que el desarrollo de la tecnología hace que el hombre tenga mayor capacidad de captación, mayor concentración y una capacidad de trabajo más llevadera.

En este grupo de entusiastas están los jóvenes, que ven estos nuevos avances como una manera de diversión más. Y es que ya son muchos los jóvenes que utilizan este nuevo avance como parte rutinaria de su vida. También están los jóvenes estudiantes, para éstos este desarrollo forma parte ya de su nivel académico. Los niños también se ubican en este grupo, y es que una videoconsola, una cámara, un ordenador son los nuevos juguetes modelo.

Por otro lado, se encuentra la sociedad reacia a estos cambios. En primer lugar, la tercera edad, y es que ésta no se encuentra conforme con algo tan novedoso y tan poco accesible para ellos. Ven este desarrollo como algo que los aparta de una sociedad en la que no se sienten tratados por igual. En este grupo se encuentran personas que no acogen este cambio pero se conforman. Las que no están de acuerdo, y por ello se mantienen apartadas de ese mundo tan novedoso. Estas personas se han tenido que adaptar quizás en el mundo laboral para no perder su puesto de trabajo, pero en su vida personal se mantienen aislados de esto.

Conclusiones

Todos sabemos que el siglo XXI está lleno de cambios tecnológicos, pero cada uno los acoge de una manera diferente. Aún así, la tecnología está intentando esforzarse en crear nuevos productos accesibles a personas como la tercera edad. Sólo es cuestión de abrir la mente a este nuevo mundo interactivo o aceptar que este cambio tecnológico cambia inevitablemente el rumbo de las sociedades, esto es, produciéndose así las nuevas sociedades interactivas, las nuevas generaciones.

[editar] Medio ambiente y tecnologías

La principal finalidad de las tecnologías es transformar el entorno humano (natural y social), para adaptarlo mejor a las necesidades y deseos humanos. En ese proceso se usan recursos naturales (terreno, aire, agua, materiales, fuentes de energía...) y personas que proveen la información, mano de obra y mercado para las actividades tecnológicas.

El principal ejemplo de transformación del medio ambiente natural son las ciudades, construcciones completamente artificiales por donde circulan productos naturales como aire y agua, que son contaminados durante su uso. La tendencia, aparentemente irreversible, es la urbanización total del planeta. Se estima que en el transcurso de 2008 la población mundial urbana superará a la rural por primera vez en la historia.[40] [41] Esto ya ha sucedido en el siglo XX para los países más industrializados. En casi todos los países la cantidad de ciudades está en continuo crecimiento y la población de la gran mayoría de ellas está en continuo aumento. La razón es que las ciudades proveen mayor cantidad de servicios esenciales, puestos de trabajo, comercios, seguridad personal, diversiones y acceso a los servicios de salud y educación.

Además del creciente reemplazo de los ambientes naturales (cuya preservación en casos particularmente deseables ha obligado a la creación de parques y reservas naturales), la extracción de ellos de materiales o su contaminación por el uso humano, está generando problemas de difícil reversión. Cuando esta extracción o contaminación excede la capacidad natural de reposición o regeneración, las consecuencias pueden ser muy graves. Son ejemplos:

Se pueden mitigar los efectos que las tecnologías producen sobre el medio ambiente estudiando los impactos ambientales que tendrá una obra antes de su ejecución, sea ésta la construcción de un caminito en la ladera de una montaña o la instalación de una gran fábrica de papel a la vera de un río. En muchos países estos estudios son obligatorios y deben tomarse recaudos para minimizar los impactos negativos (rara vez pueden eliminarse por completo) sobre el ambiente natural y maximizar (si existen) los impactos positivos (caso de obras para la prevención de aludes o inundaciones).

Para eliminar completamente los impactos ambientales negativos no debe tomarse de la naturaleza o incorporar a ella más de los que es capaz de reponer, o eliminar por sí misma. Por ejemplo, si se tala un árbol se debe plantar al menos uno; si se arrojan residuos orgánicos a un río, la cantidad no debe exceder su capacidad natural de degradación. Esto implica un costo adicional que debe ser provisto por la sociedad, transformando los que actualmente son costos externos de las actividades humanas (es decir, costos que no paga el causante, por ejemplo los industriales, sino otras personas) en costos internos de las actividades responsables del impacto negativo. De lo contrario se generan problemas que deberán ser resueltos por nuestros descendientes, con el grave riesgo de que en el transcurso del tiempo se transformen en problemas insolubles.

El concepto de desarrollo sustentable o sostenible tiene metas más modestas que el probablemente inalcanzable impacto ambiental nulo. Su expectativa es permitir satisfacer las necesidades básicas, no suntuarias, de las generaciones presentes sin afectar de manera irreversible la capacidad de las generaciones futuras de hacer lo propio. Además del uso moderado y racional de los recursos naturales, esto requiere el uso de tecnologías específicamente diseñadas para la conservación y protección del medio ambiente.

[editar] Ética y tecnologías

Cuando el lucro es la finalidad principal de las actividades tecnológicas, caso ampliamente mayoritario, el resultado inevitable es considerar a las personas como mercaderías.

Cuando hay seres vivos involucrados (animales de laboratorio y personas), caso de las tecnologías médicas, la experimentación tecnológica tiene restricciones éticas inexistentes para la materia inanimada.

Las consideraciones morales rara vez entran en juego para las tecnologías militares, y aunque existen acuerdos internacionales limitadores de las acciones admisibles para la guerra, como la Convención de Ginebra, estos acuerdos son frecuentemente violados por los países con argumentos de supervivencia y hasta de mera seguridad.

[editar] Tecnologías apropiadas

Se considera que una tecnología es apropiada cuando tiene efectos beneficiosos sobre las personas y el medio ambiente. Aunque el tema es hoy (y probablemente seguirá siéndolo por mucho tiempo) objeto de intenso debate, hay acuerdo bastante amplio sobre las principales características que una tecnología debe tener para ser social y ambientalmente apropiada:[42]

  • No causar daño previsible a las personas ni daño innecesario a las restantes formas de vida (animales y plantas).
  • No comprometer de modo irrecuperable el patrimonio natural de las futuras generaciones.
  • Mejorar las condiciones básicas de vida de todas las personas, independientemente de su poder adquisitivo.
  • No ser coercitiva y respetar los derechos y posibilidades de elección de sus usuarios voluntarios y de sus sujetos involuntarios.
  • No tener efectos generalizados irreversibles, aunque estos parezcan a primera vista ser beneficiosos o neutros.
  • La inversión de los gobiernos en tecnologías apropiadas debe priorizar de modo absoluto la satisfacción de las necesidades humanas básicas de alimentación, vestimenta, vivienda, salud, educación, seguridad personal, participación social, trabajo y transporte.

Los conceptos tecnologías apropiadas y tecnologías de punta son completamente diferentes. Las tecnologías de punta, término publicitario que enfatiza la innovación, son usualmente tecnologías complejas que hacen uso de muchas otras tecnologías más simples. Las tecnologías apropiadas frecuentemente, aunque no siempre, usan saberes propios de la cultura (generalmente artesanales) y materias primas fácilmente obtenibles en el ambiente natural donde se aplican.[43] Algunos autores acuñaron el término tecnologías intermedias para designar a las tecnologías que comparten características de las apropiadas y de las industriales.

[editar] Ejemplos de tecnologías apropiadas

  • La bioconstrucción o construcción de viviendas con materiales locales, como el adobe, con diseños sencillos pero que garanticen la estabilidad de la construcción, la higiene de las instalaciones, la protección contra las variaciones normales del clima y un bajo costo de mantenimiento, actividad tecnológica frecuentemente descuidada.[44]
  • La letrina abonera seca es una manera higiénica de disponer de los excrementos humanos y transformarlos en abono sin uso de agua. Es una tecnología apropiada para ambientes donde el agua es escasa o no se puede depurar su carga orgánica con facilidad y seguridad.[45]

[editar] Ludismo

El ludismo o luddismo, denominado así por un no se sabe si real o imaginario personaje destructor de máquinas en la Inglaterra de la Revolución industrial, Ned Ludd, es la ideología que atribuye a los dispositivos tecnológicos ser la causa de muchos males de la sociedad moderna. Los luditas consideran que las máquinas quitan puestos de trabajo a las personas, las alejan de la sana vida natural y destruyen el medio ambiente. Uno de los más notorios luditas contemporáneos fue Theodore John Kaczynski, el Unabomber, quien mató e hirió a muchos tecnólogos usando cartas bomba.

Los luditas no diferencian entre las tecnologías y las finalidades para las que son usadas, englobándolas a todas en la misma categoría. Consideran así, tal vez sin expresarlo verbalmente, que las tecnologías médicas, que salvan anualmente centenares de millones de vidas, no tienen diferencias esenciales con las tecnologías de la guerra, que matan a centenares de miles de personas en el mismo lapso. Este sincretismo elude u oscurece la necesaria discusión de la concordancia ética entre medios y fines que es la base de los imperativos categóricos kantianos.

[editar] Oficios técnicos y profesiones tecnológicas

     

[editar] Referencias

  1. Carl Marx, Tecnología industrial y división del trabajo, reproducido en Torcuato di Tella (compilador), Introducción a la Sociología, Eudeba, Buenos Aires (Argentina), 1987, pp. 127-134, ISBN 950-23-0197-8.
  2. El tema es detalladamente discutido en el libro de Leroi-Gourhan dado en las fuentes.
  3. Isaac Asimov, Momentos estelares de la ciencia, Alianza Editorial, Madrid (España), 2003, ISBN 978-84-206-3980-2.
  4. J. P. Guilford, La naturaleza de la inteligencia humana, Edit. Paidos, Buenos Aires (Argentina), 1977.
  5. Edward de Bono, Lateral thinking, Penguin Books, Londres (Gran Bretaña), 1970. Hay versión castellana.
  6. Allen Newell y Herbert A. Simon, Human problem solving, Prentice-Hall, Englewood Cliffs (New Jersey, EE. UU.), 1972.
  7. Crónica de la Técnica (ver fuentes), pp. 14-17.
  8. Orígenes del hombre 5. El primer Hombre (I), Ediciones Folio; Barcelona (España); 1993, pp. 22-31.
  9. Jared Diamond, Guns, germs, and steel. The fates of human societies (Armas, microbios y acero. Los destinos de las sociedades humanas), Edit. Norton, Londres (Gran Bretaña) - Nueva York (EE.UU.), 1997, p. 97
  10. Michael Andrews, El nacimiento de Europa, Edit. Planeta, España, 1992, ISBN 84-320-5955-2
  11. V. Girdib Childe, Los orígenes de la civilización, Fondo de Cultura Económica, México, 1954, cap. V.
  12. Samuel Noah Kramer, La Historia empieza en Sumer, Edit. Aymá, Barcelona (España), 1956, cap. I.
  13. Frank Trippet, Los primeros jinetes (I) en Orígenes del hombre, volumen 37, Ediciones Folio, Barcelona (España), 1994, ISBN 84-7583-476-0.
  14. Crónica de la técnica (ver sección Fuentes), p. 19.
  15. Enciclopedia Microsoft Encarta, Edad del bronce.
  16. Crónica de la Técnica (ver Fuentes), p. 28.
  17. Crónica de la Técnica (ver Fuentes), p. 37.
  18. Crónica de la Técnica (ver Fuentes), p. 54.
  19. a b Crónica de la Técnica (ver Fuentes), p. 343.
  20. Crónica de la Técnica (ver Fuentes), p. 132.
  21. Crónica de la Técnica (ver Fuentes), p. 155.
  22. Crónica de la Técnica (ver Fuentes), pp. 188 y 196.
  23. Crónica de la Técnica (ver Fuentes), pp. 215 y 216.
  24. Crónica de la Técnica (ver Fuentes), p. 266.
  25. Enciclopedia Encarta, Edward Jenner.
  26. Crónica de la Técnica (ver Fuentes), p. 378.
  27. Crónica de la Técnica (ver Fuentes), p. 397.
  28. Ronald M Dell y David Anthony James Rand, Clean Energy, Royal Society of Chemistry, Gran Bretaña, 2004, ISBN 0-85404-546-5.
  29. Crónica de la Técnica (ver Fuentes), pp. 571 y 614.
  30. Crónica de la Técnica (ver Fuentes), p.643.
  31. Joseph A. Schumpeter, On entrepreneurs, innovations, business cycles, and the evolution of capitalism, Addison-Wesley, Cambridge (Mass. EE. UU.), 1951.
  32. Max Weber, El político y el científico, Ediciones Libertador, Buenos Aires (Argentina), 2005, p. 88.
  33. a b Montserrat Galcerán Huguet y Mario Domínguez Sánchez, Innovación tecnológica y sociedad de masas, Edit. Síntesis, Madrid (España), 1997, cap. 3 El control del tiempo: taylorismo y/o fordismo.
  34. Benjamín Coriat, El taller y el cronómetro. Ensayo sobre el taylorismo, el fordismo y la producción en masa, Editorial Siglo Veintuno, México, 1991.
  35. Wassily Leontief ; Análisis económico input-output; Editorial Planeta-Agostini; Argentina-España-México; 1993.
  36. Herbert Marshall McLuhan y B. R. Powers, La aldea global en la vida y los medios de comunicación mundiales en el siglo XXI, Editorial Planeta-Argentina, Buenos Aires (Argentina), 1994, pp. 21-29.
  37. C. E. Solivérez, Educación Tecnológica para comprender el fenómeno tecnológico, Instituto Nacional de Educación Técnica, Buenos Aires Argentina, 2003.
  38. Luis Doval y Aquiles Gay, Tecnología: finalidad educativa y acercamiento didáctico, Programa Prociencia-CONICET y Ministerio de Cultura y Educación de la Nación, Buenos Aires (Argentina), 1995, ISBN 950-687-018-7.
  39. Marshall McLuhan y B. R. Powers, La aldea global. Transformaciones en la vida y los medios de comunicación mundiales en el siglo XXI, Edit. Planeta-Agostini, Barcelona (España), 1994, ISBN 84-395-2265-7, p. 26.
  40. La población urbana mundial superará a la rural en 2008, ABC (13-1-2007), España
  41. Urban Population, Development and the Enviroment 2007 (en inglés), Department of Economic and Social Affairs, Population Division, ONU (2007)
  42. Propuestas tecnológicas del Institute of Science in Society
  43. TecnologíasApropiadas.com
  44. Johan van Lengen, Manual del arquitecto descalzo. Cómo constuir casas y otros edificios, Editorial Concepto, México, 1980, ISBN 968-405-102-6.
  45. Uno Winblad y Wen Kilama, Sanitation without water, Swedish International Development Authority, Uppsala (Suecia), 1980, ISBN 91-586-7008-4.

[editar] Bibliografía

  • Ashton, T. S.; La Revolución Industrial: 1760-1830; Fondo de Cultura Económica; México; 1950.
  • Bernal, John D.; Historia social de la ciencia 1. La ciencia en la historia; Ediciones Península; Barcelona (España); 1967.
  • Bernal, John D.; Historia social de la ciencia 2. La ciencia en nuestro tiempo; Ediciones Península; Barcelona (España); 1967.
  • Buch, Tomás; Sistemas tecnológicos; Editorial Aique; Buenos Aires (Argentina); 1999.
  • Crónica de la Técnica, Plaza & Janes Editores, Barcelona (España), 1989.
  • Camp, Sprague de; The ancient engineers. Technology and invention from the earliest times to the Renaissance; Dorset Press; Nueva York (EE. UU.); 1960.
  • Childe, V. Gordon; Los orígenes de la civilización; Fondo de Cultura Económica; México; 1971.
  • Ciapuscio, Héctor; Nosotros & la tecnología; Edit. Edit. Agora; Buenos Aires (Argentina); 1999; ISBN 987-96235-X.
  • Derry T. K. - Williams, Trevor I.; Historia de la Tecnología 1.Desde la antigüedad hasta 1750; Siglo Veintiuno de España Editores; Madrid (España); 1977.
  • Derry T. K. - Williams, Trevor I.; Historia de la Tecnología 2. 1750 hasta 1900; Siglo Veintiuno de España Editores; Madrid (España); 1977.
  • Derry T. K. - Williams, Trevor I.; Historia de la Tecnología 3. 1750 hasta 1900; Siglo Veintiuno de España Editores; Madrid (España); 1977.
  • Ducassé, Pierre; Historia de las técnicas; Editorial Universitaria de Buenos Aires; Buenos Aires (Argentina); 1961.
  • Jacomy, Bruno; Historia de las técnicas; Editorial Losada; Buenos Aires (Argentina); 1991.
  • Leroi-Gourhan, André; El hombre y la materia. Evolución y técnica I; Edit. Taurus; Madrid (España); 1988.
  • Pounds, Norman J. G.; La vida cotidiana: historia de la cultura material; Editorial Crítica; Barcelona (España); 1989.
  • Simon, Herbert; Las ciencias de lo artificial; Edit. A. T. E.; España; 1973.
  • Solivérez, Carlos E.; Ciencia, Técnica y Sociedad; Facultad Latinoamericana de Ciencias Sociales; Buenos Aires (Argentina); 1992.
  • Toffler, Alvin; Future shock; Daily Press; Londres (Gran Bretaña); 1970.
  • Toffler, Alvin; La tercera ola; Plaza y Janés; 1979.
  • Williams, Trevor I.; Historia de la Tecnología 4. Desde 1900 hasta 1950; Siglo Veintiuno de España Editores; Madrid (España); 1982 y 1987.
  • Williams, Trevor I.; Historia de la Tecnología 5. Desde 1900 hasta 1950; Siglo Veintiuno de España Editores; Madrid (España); 1987.
  • Subb :D

[editar] Véase también

[editar] Enlaces externos

CIENCIA2: LA ASTRONOMÍA. La astronomía (del griego: αστρονομία = άστρον + νόμος, etimológicamente la "ley de las estrellas") es la ciencia que se ocupa del estudio de los cuerpos celestes, sus movimientos, los fenómenos ligados a ellos, su registro y la investigación de su origen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Santo Tomás de Aquino, Tycho Brahe, Johannes Kepler, Galileo Galilei, Isaac Newton, Immanuel Kant, Gustav Kirchhoff y Albert Einstein han sido algunos de sus cultivadores.

Astronomía

De Wikipedia, la enciclopedia libre

El Hubble: telescopio ubicado fuera de la atmósfera que observa objetos celestes. Sus maravillosas imágenes han asombrado al mundo, descubierto estrellas y planteado hipótesis. Es el icono de la astronomía moderna.
Para otros usos de este término, véase Astronomía (desambiguación).

La astronomía (del griego: αστρονομία = άστρον + νόμος, etimológicamente la "ley de las estrellas") es la ciencia que se ocupa del estudio de los cuerpos celestes, sus movimientos, los fenómenos ligados a ellos, su registro y la investigación de su origen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Santo Tomás de Aquino, Tycho Brahe, Johannes Kepler, Galileo Galilei, Isaac Newton, Immanuel Kant, Gustav Kirchhoff y Albert Einstein han sido algunos de sus cultivadores.

Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

No debe confundirse a la Astronomía con la astrología. Aunque ambas comparten un origen común, son muy diferentes. La Astronomía es una ciencia: los astrónomos siguen el método científico. La astrología, que se ocupa de la supuesta influencia de los astros en la vida de los hombres, es una pseudociencia: los astrólogos, siguen un sistema de creencias no probadas o abiertamente erróneas, por ejemplo, no tienen en cuenta la precesión de los equinoccios, un descubrimiento que se remonta a Hiparco de Nicea.

Contenido

[ocultar]

[editar] Breve historia de la Astronomía

Artículo principal: Historia de la astronomía
Aristóteles inauguró toda una nueva perspectiva de la visión cósmica, formalizando el modelo astronómico, contra el astrológico.
Stonehenge, 2800 a. C.: esta construcción megalítica se realizó sobre conocimientos astronómicos muy precisos. Un menhir que supera los 6 m de altura indicaba, a quien miraba desde el centro, la dirección exacta de la salida del Sol en el solsticio de verano. Algunas cavidades servían para colocar postes de madera capaces de indicar los puntos de referencia en el recorrido de la Luna.


En casi todas las religiones antiguas existía la cosmogonía, que intentaba explicar el origen del universo, ligando éste a los elementos mitológicos. La historia de la astronomía es tan antigua como la historia del ser humano. Antiguamente se ocupaba, únicamente, de la observación y predicciones de los movimientos de los objetos visibles a simple vista, quedando separada durante mucho tiempo de la Física. En Sajonia-Anhalt, Alemania, se encuentra el famoso Disco celeste de Nebra, que es la representación más antigua conocida de la bóveda celeste. Quizá fueron los astrónomos chinos quienes dividieron, por primera vez, el cielo en constelaciones. En Europa, las doce constelaciones que marcan el movimiento anual del Sol fueron denominadas constelaciones zodiacales. Los antiguos griegos hicieron importantes contribuciones a la astronomía, entre ellas, la definición de magnitud. La astronomía precolombina poseía calendarios muy exactos y parece ser que las pirámides de Egipto fueron construidas sobre patrones astronómicos muy precisos.

La cultura griega clásica primigenia postulaba que la Tierra era plana. En el modelo aristotélico lo celestial pertenecía a la perfección -"cuerpos celestes perfectamente esféricos moviéndose en órbitas circulares perfectas"-, mientras que lo terrestre era imperfecto; estos dos reinos se consideraban como opuestos. Aristóteles defendía la teoría geocéntrica para desarrollar sus postulados. Fue probablemente Eratóstenes quien diseñara la esfera armilar que es un astrolabio para mostrar el movimiento aparente de las estrellas alrededor de la tierra.

Esfera armilar.

La astronomía observacional estuvo casi totalmente estancada en Europa durante la Edad Media, a excepción de algunas aportaciones como la de Alfonso X el Sabio con sus tablas alfonsíes, o los tratados de Alcabitius, pero floreció en el mundo con el Imperio persa y la cultura árabe. Al final del siglo X, un gran observatorio fue construido cerca de Teherán (Irán), por el astrónomo persa Al-Khujandi, quien observó una serie de pasos meridianos del Sol, lo que le permitió calcular la oblicuidad de la eclíptica. También en Persia, Omar Khayyam elaboró la reforma del calendario que es más preciso que el calendario juliano acercándose al Calendario Gregoriano. A finales del siglo IX, el astrónomo persa Al-Farghani escribió ampliamente acerca del movimiento de los cuerpos celestes. Su trabajo fue traducido al latín en el siglo XII. Abraham Zacuto fue el responsable en el siglo XV de adaptar las teorías astronómicas conocidas hasta el momento para aplicarlas a la navegación de la marina portuguesa. Ésta aplicación permitió a Portugal ser la puntera en el mundo de los descubrimientos de nuevas tierras fuera de Europa.

[editar] Revolución científica

Vista parcial de un monumento dedicado a Copérnico en Varsovia.

Durante siglos, la visión geocéntrica de que el Sol y otros planetas giraban alrededor de la Tierra no se cuestionó. Esta visión era lo que para nuestros sentidos se observaba. En el Renacimiento, Nicolás Copérnico propuso el modelo heliocéntrico del Sistema Solar. Su trabajo De Revolutionibus Orbium Coelestium fue defendido, divulgado y corregido por Galileo Galilei y Johannes Kepler, autor de Harmonices Mundi, en el cual se desarrolla por primera vez la tercera ley del movimiento planetario.

Galileo añadió la novedad del uso del telescopio para mejorar sus observaciones. La disponibilidad de datos observacionales precisos llevó a indagar en teorías que explicasen el comportamiento observado (véase su obra Sidereus Nuncius). Al principio sólo se obtuvieron reglas ad-hoc, cómo las leyes del movimiento planetario de Kepler, descubiertas a principios del siglo XVII. Fue Isaac Newton quien extendió hacia los cuerpos celestes las teorías de la gravedad terrestre y conformando la Ley de la gravitación universal, inventando así la mecánica celeste, con lo que explicó el movimiento de los planetas y consiguiendo unir el vacío entre las leyes de Kepler y la dinámica de Galileo. Esto también supuso la primera unificación de la astronomía y la física (véase Astrofísica).

Tras la publicación de los Principios Matemáticos de Isaac Newton (que también desarrolló el telescopio reflector), se transformó la navegación marítima. A partir de 1670 aproximadamente, utilizando instrumentos modernos de latitud y los mejores relojes disponibles se ubicó cada lugar de la Tierra en un planisferio o mapa, calculando para ello su latitud y su longitud. La determinación de la latitud fue fácil pero la determinación de la longitud fue mucho más delicada. Los requerimientos de la navegación supusieron un empuje para el desarrollo progresivo de observaciones astronómicas e instrumentos más precisos, constituyendo una base de datos creciente para los científicos.

Ilustración de la teoría del "Big Bang" o primera gran explosión y de la evolución esquemática del universo desde entonces.

A finales del siglo XIX se descubrió que, al descomponer la luz del Sol, se podían observar multitud de líneas de espectro (regiones en las que había poca o ninguna luz). Experimentos con gases calientes mostraron que las mismas líneas podían ser observadas en el espectro de los gases, líneas específicas correspondientes a diferentes elementos químicos. De esta manera se demostró que los elementos químicos en el Sol (mayoritariamente hidrógeno) podían encontrarse igualmente en la Tierra. De hecho, el helio fue descubierto primero en el espectro del Sol y sólo más tarde se encontró en la Tierra, de ahí su nombre.

Se descubrió que las estrellas eran objetos muy lejanos y con el espectroscopio se demostró que eran similares al Sol, pero con una amplia gama de temperaturas, masas y tamaños. La existencia de la Vía Láctea como un grupo separado de estrellas no se demostró sino hasta el siglo XX, junto con la existencia de galaxias externas y, poco después, la expansión del universo, observada en el efecto del corrimiento al rojo. La astronomía moderna también ha descubierto una variedad de objetos exóticos como los quásares, púlsares, radiogalaxias, agujeros negros, estrellas de neutrones, y ha utilizado estas observaciones para desarrollar teorías físicas que describen estos objetos. La cosmología hizo grandes avances durante el siglo XX, con el modelo del Big Bang fuertemente apoyado por la evidencia proporcionada por la astronomía y la física, como la radiación de fondo de microondas, la Ley de Hubble y la abundancia cosmológica de los elementos químicos.

Durante el siglo XX, la espectrometría avanzó, en particular como resultado del nacimiento de la física cuántica, necesaria para comprender las observaciones astronómicas y experimentales.

[editar] Astronomía Observacional

Artículo principal: Astronomía observacional

[editar] Estudio de la orientación por las estrellas

La Osa Mayor es una constelación tradicionalmente utilizada como punto de referencia celeste para la orientación tanto marítima como terrestre.
Representación virtual en 3D de la situación de las galaxias de nuestro grupo local en el espacio.

Para ubicarse en el cielo, se agruparon las estrellas que se ven desde la Tierra en constelaciones. Así, continuamente se desarrollan mapas (cilíndricos o cenitales) con su propia nomenclatura astronómica para localizar las estrellas conocidas y agregar los últimos descubrimientos.

Aparte de orientarse en la Tierra a través de las estrellas, la astronomía estudia el movimiento de los objetos en la esfera celeste, para ello se utilizan diversos sistemas de coordenadas astronómicas. Estos toman como referencia parejas de círculos máximos distintos midiendo así determinados ángulos respecto a estos planos fundamentales. Estos sistemas son principalmente:

  • Sistema altacimutal, u horizontal que toma como referencias el horizonte celeste y el meridiano del lugar.
  • Sistemas horario y ecuatorial, que tienen de referencia el ecuador celeste, pero el primer sistema adopta como segundo círculo de referencia el meridiano del lugar mientras que el segundo se refiere al círculo horario (círculo que pasa por los polos celestes).
  • Sistema eclíptico, que se utiliza normalmente para describir el movimiento de los planetas y calcular los eclipses; los círculos de referencia son la eclíptica y el círculo de longitud que pasa por los polos de la eclíptica y el punto γ.
  • Sistema galáctico, se utiliza en estadística estelar para describir movimientos y posiciones de cuerpos galácticos. Los círculos principales son la intersección del plano ecuatorial galáctico con la esfera celeste y el círculo máximo que pasa por los polos de la Vía Láctea y el ápice del Sol (punto de la esfera celeste donde se dirige el movimiento solar).

La astronomía de posición es la rama más antigua de esta ciencia. Describe el movimiento de los astros, planetas, satélites y fenómenos como los eclipses y tránsitos de los planetas por el disco del Sol. Para estudiar el movimiento de los planetas se introduce el movimiento medio diario que es lo que avanzaría en la órbita cada día suponiendo movimiento uniforme. La astronomía de posición también estudia el movimiento diurno y el movimiento anual del Sol. Son tareas fundamentales de la misma la determinación de la hora y para la navegación el cálculo de las coordenadas geográficas. Para la determinación del tiempo se usa el tiempo de efemérides ó también el tiempo solar medio que está relacionado con el tiempo local. El tiempo local en Greenwich se conoce como Tiempo Universal.

La distancia a la que están los astros de la Tierra en el de universo se mide en unidades astronómicas, años luz o pársecs. Conociendo el movimiento propio de las estrellas, es decir lo que se mueve cada siglo sobre la bóveda celeste se puede predecir la situación aproximada de las estrellas en el futuro y calcular su ubicación en el pasado viendo como evolucionan con el tiempo la forma de las constelaciones.

Con un pequeño telescopio pueden realizarse grandes observaciones. El campo amateur es amplio y cuenta con muchos seguidores.

[editar] Instrumentos de observación

Galileo Galilei observó gracias a su telescopio cuatro lunas del planeta Júpiter, un gran descubrimiento que chocaba diametralmente con los postulados tradicionalistas de la Iglesia Católica de la época.
Artículo principal: Observatorio astronómico

Para observar la bóveda celeste y las constelaciones más conocidas no hará falta ningún instrumento, para observar cometas o algunas nebulosas sólo serán necesarios unos prismáticos, los grandes planetas se ven a simple vista; pero para observar detalles de los discos de los planetas del sistema solar o sus satélites mayores bastará con un telescopio simple. Si se quiere observar con profundidad y exactitud determinadas características de los astros, se necesitan instrumentos que necesitan de la precisión y tecnología de los últimos avances científicos.

[editar] Astronomía visible

Artículo principal: Astronomía visible
Artículo principal: Telescopio

El telescopio fue el primer instrumento de observación del cielo. Aunque su invención se le atribuye a Hans Lippershey, el primero en utilizar este invento para la astronomía fue Galileo Galilei quien decidió construirse él mismo uno. Desde aquel momento, los avances en este instrumento han sido muy grandes como mejores lentes y sistemas avanzados de posicionamiento.

Actualmente, el telescopio más grande del mundo se llama Very Large Telescope y se encuentra en el observatorio Paranal, al norte de Chile. Consiste en cuatro telescopios ópticos reflectores que se conjugan para realizar observaciones de gran resolución.

[editar] Astronomía del espectro electromagnético o radioastronomía

Artículo principal: Radioastronomía
Artículo principal: Radiotelescopio

Se han aplicado diversos conocimientos de la física, las matemáticas y de la química a la astronomía. Estos avances han permitido observar las estrellas con muy diversos métodos. La información es recibida principalmente de la detección y el análisis de la radiación electromagnética (luz, infrarrojos, ondas de radio), pero también se puede obtener información de los rayos cósmicos, neutrinos y meteoros.

El Very Large Array. Como muchos otros telescopios, éste es un array interferométrico formado por muchos radiotelescopios más pequeños.

Estos datos ofrecen información muy importante sobre los astros, su composición química, temperatura, velocidad en el espacio, movimiento propio, distancia desde la Tierra y pueden plantear hipótesis sobre su formación, desarrollo estelar y fin.

El análisis desde la Tierra de las radiaciones (infrarrojos, rayos x, rayos gamma, etc.) no sólo resulta obstaculizado por la absorción atmosférica, sino que el problema principal, vigente también en el vacío, consiste en distinguir la señal recogida del "ruido de fondo", es decir, de la enorme emisión infrarroja producida por la Tierra o por los propios instrumentos. Cualquier objeto que no se halle a 0 K (-273,15 °C) emite señales electromagnéticas y, por ello, todo lo que rodea a los instrumentos produce radiaciones de "fondo". Hasta los propios telescopios irradian señales. Realizar una termografía de un cuerpo celeste sin medir el calor al que se halla sometido el instrumento resulta muy difícil: además de utilizar película fotográfica especial, los instrumentos son sometidos a una refrigeración continua con helio o hidrógeno líquido.

La radioastronomía se basa en la observación por medio de los radiotelescopios, unos instrumentos con forma de antena que recogen y registran las ondas de radio o radiación electromagnética emitidas por los distintos objetos celestes.

Estas ondas de radio, al ser procesadas ofrecen un espectro analizable del objeto que las emite. La radioastronomía ha permitido un importante incremento del conocimiento astronómico, particularmente con el descubrimiento de muchas clases de nuevos objetos, incluyendo los púlsares (o magnétares), quásares, las denominadas galaxias activas, radiogalaxias y blázares. Esto es debido a que la radiación electromagnética permite "ver" cosas que no son posibles de detectar en las astronomía óptica. Tales objetos representan algunos de los procesos físicos más extremos y energéticos en el universo.

Este método de observación está en constante desarrollo ya que queda mucho por avanzar en esta tecnología.

Diferencia entre la luz visible e infrarroja en la Galaxia del Sombrero ó Messier 104.
[editar] Astronomía de infrarrojos
Artículo principal: Astronomía infrarroja
Artículo principal: Espectroscopia infrarroja

Gran parte de la radiación astronómica procedente del espacio (la situada entre 1 y 1000μm) es absorbida en la atmósfera. Por esta razón, los mayores telescopios de radiación infrarroja se construyen en la cima de montañas muy elevadas, se instalan en aeroplanos especiales de cota elevada, en globos, o mejor aún, en satélites de la órbita terrestre.

[editar] Astronomía ultravioleta
Artículo principal: Astronomía ultravioleta
Imagen que ofrece una observación ultravioleta de los anillos de Saturno. Esta reveladora imagen fue obtenida por la sonda Cassini-Huygens.

La astronomía ultravioleta basa su actividad en la detección y estudio de la radiación ultravioleta que emiten los cuerpos celestes. Este campo de estudio cubre todos los campos de la astronomía. Las observaciones realizadas mediante este método son muy precisas y han realizado avances significativos en cuanto al descubrimiento de la composición de la materia interestelar e intergaláctica, el de la periferia de las estrellas, la evolución en las interacciones de los sistemas de estrellas dobles y las propiedades físicas de los quásares y de otros sistemas estelares activos. En las observaciones realizadas con el satélite artificial Explorador Internacional Ultravioleta, los estudiosos descubrieron que la Vía Láctea está envuelta por un aura de gas con elevada temperatura. Este aparato midió asimismo el espectro ultravioleta de una supernova que nació en la Gran Nube de Magallanes en 1987. Este espectro fue usado por primera vez para observar a la estrella precursora de una supernova.

La Galaxia elíptica M87 emite señales electromagnéticas en todos los espectros conocidos.
[editar] Astronomía de rayos X
Artículo principal: Astronomía de rayos-X
Artículo principal: Radiografía

La emisión de rayos x se cree que procede de fuentes que contienen materia a elevadísimas temperaturas, en general en objetos cuyos átomos o electrones tienen una gran energía. El descubrimiento de la primera fuente de rayos x procedente del espacio en 1962 se convirtió en una sorpresa. Esa fuente denominada Scorpio X-1 está situada en la constelación de Escorpio en dirección al centro de la Vía Láctea. Por este descubrimiento Riccardo Giacconi obtuvo el Premio Nobel de Física en 2002.

El observatorio espacial Swift está específicamente diseñado para percibir señales gamma del universo y sirve de herramienta para intentar clarificar los fenómenos observados.
[editar] Astronomía de rayos gamma
Artículo principal: Astronomía de rayos gamma
Artículo principal: Espectroscopia de rayos gamma

Los rayos gamma son radiaciones emitidas por objetos celestes que se encuentran en un proceso energético extremadamente violento. Algunos astros despiden brotes de rayos gamma o también llamados BRGs. Se trata de los fenómenos físicos más luminosos del universo produciendo una gran cantidad de energía en haces breves de rayos que pueden durar desde unos segundos hasta unas pocas horas. La explicación de estos fenómenos es aún objeto de controversia.

Los fenómenos emisores de rayos gamma son frecuentemente explosiones de supernovas, su estudio también intenta clarificar el origen de la primera explosión del universo o big bang.

El Observatorio de Rayos Gamma Compton -ya inexistente- fue el segundo de los llamados grandes observatorios espaciales (detrás del telescopio espacial Hubble) y fue el primer observatorio a gran escala de estos fenómenos. Ha sido reemplazado recientemente por el satélite Fermi. El observatorio orbital INTEGRAL observa el cielo en el rango de los rayos gamma blandos o rayos X duros.

A energías por encima de unas decenas de GeV, los rayos gamma sólo se pueden observar desde el suelo usando los llamados telescopios Cherenkov como MAGIC. A estas energías el universo también puede estudiarse usando partículas distintas a los fotones, tales como los rayos cósmicos o los neutrinos. Es el campo conocido como Física de Astropartículas.

[editar] Astronomía Teórica

Los astrónomos teóricos utilizan una gran variedad de herramientas como modelos matemáticos analíticos y simulaciones numéricas por computadora. Cada uno tiene sus ventajas. Los modelos matemáticos analíticos de un proceso por lo general, son mejores porque llegan al corazón del problema y explican mejor lo que está sucediendo. Los modelos numéricos, pueden revelar la existencia de fenómenos y efectos que de otra manera no se verían.[1] [2]

Los teóricos de la astronomía ponen su esfuerzo en crear modelos teóricos e imaginar las consecuencias observacionales de estos modelos. Esto ayuda a los observadores a buscar datos que puedan refutar un modelo o permitan elegir entre varios modelos alternativos o incluso contradictorios.

Los teóricos, también intentan generar o modificar modelos para conseguir nuevos datos. En el caso de una inconsistencia, la tendencia general es tratar de hacer modificaciones mínimas al modelo para que se corresponda con los datos. En algunos casos, una gran cantidad de datos inconsistentes a través del tiempo puede llevar al abandono total de un modelo.

Los temas estudiados por astrónomos teóricos incluyen: dinámica estelar y evolución estelar; formación de galaxias; origen de los rayos cósmicos; relatividad general y cosmología física, incluyendo teoría de cuerdas.

[editar] La mecánica celeste

Artículo principal: Mecánica celeste

La astromecánica o mecánica celeste tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.

[editar] Astrofísica

Artículo principal: Astrofísica

La astrofísica es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física relativística. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.

[editar] Estudio de los objetos celestes

Posición figurada de los planetas y el sol en el sistema solar, separados por planetas interiores y exteriores.

[editar] El sistema solar desde la astronomía

Artículo principal: El sistema solar

El estudio del Universo o Cosmos y más concretamente del Sistema Solar ha planteado una serie de interrogantes y cuestiones, por ejemplo cómo y cuándo se formó el sistema, por qué y cuándo desaparecerá el Sol, por qué hay diferencias físicas entre los planetas, etc.

Es difícil precisar el origen del Sistema Solar. Los científicos creen que puede situarse hace unos 4.600 millones de años, cuando una inmensa nube de gas y polvo empezó a contraerse probablemente, debido a la explosión de una supernova cercana. Alcanzada una densidad mínima ya se autocontrajo a causa de la fuerza de la gravedad y comenzó a girar a gran velocidad, por conservación de su momento cinético, al igual que cuando una patinadora repliega los brazos sobre si misma gira más rápido. La mayor parte de la materia se acumuló en el centro. La presión era tan elevada que los átomos comenzaron a fusionarse, liberando energía y formando una estrella. También había muchas colisiones. Millones de objetos se acercaban y se unían o chocaban con violencia y se partían en trozos. Algunos cuerpos pequeños (planetesimales) iban aumentando su masa mediante colisiones y al crecer, aumentaban su gravedad y recogían más materiales con el paso del tiempo (acreción). Los encuentros constructivos predominaron y, en sólo 100 millones de años, adquirió un aspecto semejante al actual. Después cada cuerpo continuó su propia evolución.

[editar] Astronomía del Sol
Artículo principal: Sol

El Sol es la estrella que, por el efecto gravitacional de su masa, domina el sistema planetario que incluye a la Tierra. Es el elemento más importante en nuestro sistema y el objeto más grande, que contiene aproximadamente el 98% de la masa total del sistema solar. Mediante la radiación de su energía electromagnética, aporta directa o indirectamente toda la energía que mantiene la vida en la Tierra. Saliendo del Sol, y esparciéndose por todo el Sistema solar en forma de espiral tenemos al conocido como viento solar que es un flujo de partículas, fundamentalmente protones y neutrones. La interacción de estas partículas con los polos magnéticos de los planetas y con la atmósfera genera las auroras polares boreales o australes. Todas estas partículas y radiaciones son absorbidas por la atmósfera. La ausencia de auroras durante el Mínimo de Maunder se achaca a la falta de actividad del Sol.

Uno de los fenómenos más desconcertantes e impactantes que podemos observar en nuestro planeta, son las auroras boreales. Fueron misterio hasta hace poco pero recientemente han sido explicadas, gracias al estudio de la astronomía del Sol.

A causa de su proximidad a la Tierra y como es una estrella típica, el Sol es un recurso extraordinario para el estudio de los fenómenos estelares. No se ha estudiado ninguna otra estrella con tanto detalle. La estrella más cercana al Sol está a 4,3 años luz.

El Sol (todo el Sistema Solar) gira alrededor del centro de la Vía Láctea, nuestra galaxia. Da una vuelta cada 200 millones de años. Ahora se mueve hacia la constelación de Hércules a 19 km/s. Actualmente el Sol se estudia desde satélites, como el Observatorio Heliosférico y Solar (SOHO), dotados de instrumentos que permiten apreciar aspectos que, hasta ahora, no se habían podido estudiar. Además de la observación con telescopios convencionales, se utilizan: el coronógrafo, que analiza la corona solar, el telescopio ultravioleta extremo, capaz de detectar el campo magnético, y los radiotelescopios, que detectan diversos tipos de radiación que resultan imperceptibles para el ojo humano.

La parte visible del Sol está a 6.000 °C y la corona, más alejada, a 2.000.000 °C. Estudiando al Sol en el ultravioleta se llegó a la conclusión de que el calentamiento de la corona se debe a la gran actividad magnética del Sol. Los límites del Sistema Solar vienen dados por el fin de su influencia o heliosfera, delimitada por un área denominada Frente de choque de terminación o Heliopausa.

[editar] Historia de la observación del Sol

El estudio del Sol se inicia con Galileo Galilei de quien se dice que se quedó ciego por observar los eclipses. Hace más de cien años se descubre la espectroscopia que permite descomponer la luz en sus longitudes de onda, gracias a esto se puede conocer la composición química, densidad, temperatura, situación los gases de su superficie, etc. En los años 50 ya se conocía la física básica del Sol, es decir, su composición gaseosa, la temperatura elevada de la corona, la importancia de los campos magnéticos en la actividad solar y su ciclo magnético de 22 años.

Imagen que ofrece una fotografía del sol en rayos x.

Las primeras mediciones de la radiación solar se hicieron desde globos hace un siglo y después fueron aviones y dirigibles para mejorar las mediciones con aparatos radioastronómicos. En 1914, C. Abbot envió un globo para medir la constante solar (cantidad de radiación proveniente del sol por centímetro cuadrado por segundo). En 1946 el cohete V-2 militar ascendió a 55 km con un espectrógrafo solar a bordo; este fotografió al sol en longitudes de onda ultravioletas. En 1948 (diez años antes de la fundación de la NASA) ya se fotografió al Sol en rayos X. Algunos cohetes fotografiaron ráfagas solares en 1956 en un pico de actividad solar.

En 1960 se lanza la primera sonda solar denominada Solrad. Esta sonda monitoreó al sol en rayos x y ultravioletas, en una longitud de onda muy interesante que muestra las emisiones de hidrógeno; este rango de longitud de onda se conoce como línea Lyman α. Posteriormente se lanzaron ocho observatorios solares denominados OSO. El OSO 1 fue lanzado en 1962. Los OSO apuntaron constantemente hacia el Sol durante 17 años y con ellos se experimentaron nuevas técnicas de transmisión fotográfica a la tierra.

Imagen en la que pueden apreciarse las manchas solares.

El mayor observatorio solar ha sido el Skylab. Estuvo en órbita durante nueve meses en 1973 y principios de 1974. Observó al Sol en rayos g, X, ultravioleta y visible, y obtuvo la mayor cantidad de datos (y los mejor organizados) que hayamos logrado jamás para un objeto celeste. En 1974 y 1976 las sondas Helios A y B se acercaron mucho al Sol para medir las condiciones del viento solar. No llevaron cámaras.

En 1980 se lanzó la sonda Solar Max, para estudiar al Sol en un pico de actividad. Tuvo una avería y los astronautas del Columbia realizaron una complicada reparación.

[editar] Manchas solares

George Ellery Hale descubrió en 1908 que las manchas solares (áreas más frías de la fotosfera) presentan campos magnéticos fuertes. Estas manchas solares se suelen dar en parejas, con las dos manchas con campos magnéticos que señalan sentidos opuestos. El ciclo de las manchas solares, en el que la cantidad de manchas solares varía de menos a más y vuelve a disminuir al cabo de unos 11 años, se conoce desde principios del siglo XVIII. Sin embargo, el complejo modelo magnético asociado con el ciclo solar sólo se comprobó tras el descubrimiento del campo magnético del Sol.

[editar] El fin del Sol: ¿el fin de la vida humana?

En el núcleo del Sol hay hidrógeno suficiente para durar otros 4.500 millones de años, es decir, se calcula que está en plenitud, en la mitad de su vida. Tal como se desprende de la observación de otros astros parecidos, cuando se gaste este hidrógeno combustible, el Sol cambiará: según se vayan expandiendo las capas exteriores hasta el tamaño actual de la órbita de la Tierra, el Sol se convertirá en una gigante roja, algo más fría que hoy pero 10.000 veces más brillante a causa de su enorme tamaño. Sin embargo, la Tierra no se consumirá porque se moverá en espiral hacia afuera, como consecuencia de la pérdida de masa del Sol. El Sol seguirá siendo una gigante roja, con reacciones nucleares de combustión de helio en el centro, durante sólo 500 millones de años. No tiene suficiente masa para atravesar sucesivos ciclos de combustión nuclear o un cataclismo en forma de explosión, como les ocurre a algunas estrellas. Después de la etapa de gigante roja, se encogerá hasta ser una enana blanca, aproximadamente del tamaño de la Tierra, y se enfriará poco a poco durante varios millones de años.

[editar] Astronomía de los planetas, satélites y otros objetos del sistema solar
Astronomía lunar: el cráter mayor es el Dédalo, fotografiado por la tripulación del Apollo 11 mientras orbitaba la Luna en 1969. Ubicado cerca del centro de la cara oculta de la luna, tiene un diámetro de alrededor de 93 kilómetros.
Vista que presentó el cometa McNaught a su paso próximo a la Tierra en enero de 2007.

Una de las cosas más fáciles de observar desde la Tierra y con un telescopio simple son los objetos de nuestro propio Sistema Solar y sus fenómenos, que están muy cerca en comparación de estrellas y galaxias. De ahí que el aficionado siempre tenga a estos objetos en sus preferencias de observación.

Los eclipses y los tránsitos astronómicos han ayudado a medir las dimensiones del sistema solar.

Dependiendo de la distancia de un planeta al Sol, tomando la Tierra como observatorio de base, los planetas se dividen en dos grandes grupos: planetas interiores y planetas exteriores. Entre estos planetas encontramos que cada uno presenta condiciones singulares: la curiosa geología de Mercurio, los movimientos retrógrados de algunos como Venus, la vida en la Tierra, la curiosa red de antiguos ríos de Marte, el gran tamaño y los vientos de la atmósfera de Júpiter, los anillos de Saturno, el eje de rotación inclinado de Urano o la extraña atmósfera de Neptuno, etc. Algunos de estos planetas cuentan con satélites que también tienen singularidades; de entre estos, el más estudiado ha sido la Luna, el único satélite de la Tierra, dada su cercanía y simplicidad de observación, conformándose una historia de la observación lunar. En la Luna hallamos claramente el llamado bombardeo intenso tardío, que fue común a casi todos los planetas y satélites, creando en algunos de ellos abruptas superficies salpicadas de impactos.

Los llamados planetas terrestres presentan similitudes con la Tierra, aumentando su habitabilidad planetaria, es decir, su potencial posibilidad habitable para los seres vivos. Así se delimita la ecósfera, un área del sistema solar que es propicia para la vida.

Más lejos de Neptuno encontramos otros planetoides como por ejemplo el hasta hace poco considerado planeta Plutón, la morfología y naturaleza de este planeta menor llevó a los astrónomos a cambiarlo de categoría en la llamada redefinición de planeta de 2006 aunque posea un satélite compañero, Caronte. Estos planetas enanos, por su tamaño no pueden ser considerados planetas como tales, pero presentan similitudes con éstos, siendo más grandes que los meteoros. Algunos son: Eris, Sedna o 1998 WW31, este último singularmente binario y de los denominados cubewanos. A todo este compendio de planetoides se les denomina coloquialmente objetos o planetas transneptunianos. También existen hipótesis sobre un planeta X que vendría a explicar algunas incógnitas, como la ley de Titius-Bode o la concentración de objetos celestes en el acantilado de Kuiper.

Entre los planetas Marte y Júpiter encontramos una concentración inusual de asteroides conformando una órbita alrededor del sol denominada cinturón de asteroides.

En órbitas dispares y heteromorfas se encuentran los cometas, que subliman su materia al contacto con el viento solar, formando colas de apariencia luminosa; se estudiaron en sus efímeros pasos por las cercanías de la Tierra los cometas McNaught o el Halley. Mención especial tienen los cometas Shoemaker-Levy 9 que terminó estrellándose contra Júpiter o el 109P/Swift-Tuttle, cuyos restos provocan las lluvias de estrellas conocidas como Perseidas o lágrimas de San Lorenzo. Estos cuerpos celestes se concentran en lugares como el cinturón de Kuiper, el denominado disco disperso o la nube de Oort y se les llama en general cuerpos menores del Sistema Solar.

En el Sistema Solar también existe una amplísima red de partículas, meteoros de diverso tamaño y naturaleza, y polvo que en mayor o menor medida se hallan sometidos al influjo del efecto Poynting-Robertson que los hace derivar irremediablemente hacia el Sol.

[editar] Astronomía de los fenómenos gravitatorios

Artículo principal: La Gravedad
Artículo principal: Agujeros negros

El campo gravitatorio del Sol es el responsable de que los planetas giren en torno a este. El influjo de los campos gravitatorios de las estrellas dentro de una galaxia se denomina marea galáctica.

Tal como demostró Einstein en su obra Relatividad general, la gravedad deforma la geometría del espacio-tiempo, es decir, la masa gravitacional de los cuerpos celestes deforma el espacio, que se curva. Este efecto provoca distorsiones en las observaciones del cielo por efecto de los campos gravitatorios, haciendo que se observen juntas galaxias que están muy lejos unas de otras. Esto es debido a que existe materia que no podemos ver que altera la gravedad. A estas masas se las denominó materia oscura.

Encontrar materia oscura no es fácil ya que no brilla ni refleja la luz, así que los astrónomos se apoyan en la gravedad, que puede curvar la luz de estrellas distantes cuando hay suficiente masa presente, muy parecido a cómo una lente distorsiona una imagen tras ella, de ahí el término lente gravitacional o anillo de Einstein. Gracias a las leyes de la física, conocer cuánta luz se curva dice a los astrónomos cuánta masa hay. Cartografiando las huellas de la gravedad, se pueden crear imágenes de cómo está distribuida la materia oscura en un determinado lugar del espacio. A veces se presentan anomalías gravitatorias que impiden realizar estos estudios con exactitud, como las ondas gravitacionales provocadas por objetos masivos muy acelerados.

Los agujeros negros son singularidades de alta concentración de masa que curva el espacio, cuando éstas acumulaciones masivas son producidas por estrellas le les denomina agujero negro estelar; esta curva espacial es tan pronunciada que todo lo que se acerca a su perímetro es absorbido por este, incluso la luz (de ahí el nombre). El agujero negro Q0906+6930 es uno de los más masivos de los observados. Varios modelos teóricos, como por ejemplo el agujero negro de Schwarzschild, aportan soluciones a los planteamientos de Einstein.

[editar] Astronomía cercana y lejana

Artículo principal: Astronomía galáctica
Artículo principal: Astronomía extragaláctica
Un caso particular lo hallamos en Andrómeda que dado su grandísimo tamaño y luminiscencia es posible apreciarla luminosa a simple vista. Llega a nosotros con una asombrosa nitidez a pesar de la enorme distancia que nos separa de ella: dos millones y medio de años luz; es decir, si sucede cualquier cosa en dicha galaxia, tardaremos dos millones y medio de años en percibirlo, o dicho de otro modo, lo que vemos ahora de ella es lo que sucedió hace dos millones quinientos mil años.

La astronomía cercana abarca la exploración de nuestra galaxia, por tanto comprende también la exploración del Sistema Solar. No obstante, el estudio de las estrellas determina si éstas pertenecen o no a nuestra galaxia. El estudio de su clasificación estelar determinará, entre otras variables, si el objeto celeste estudiado es "cercano" o "lejano".

Tal como hemos visto hasta ahora, en el Sistema Solar encontramos diversos objetos (v. El Sistema Solar desde la astronomía) y nuestro sistema solar forma parte de una galaxia que es la Vía Láctea. Nuestra galaxia se compone de miles de millones de objetos celestes que giran en espiral desde un centro muy denso donde se mezclan varios tipos de estrellas, otros sistemas solares, nubes interestelares o nebulosas, etc. y encontramos objetos como IK Pegasi, Tau Ceti o Gliese 581 que son soles cada uno con determinadas propiedades diferentes.

La estrella más cercana a nuestro sistema solar es Alpha Centauri que se encuentra a 4,3 años luz. Esto significa que la luz procedente de dicha estrella tarda 4,3 años en llegar a ser percibida en La Tierra desde que es emitida.

Estos soles o estrellas forman parte de numerosas constelaciones que son formadas por estrellas fijas aunque la diferencia de sus velocidades de deriva dentro de nuestra galaxia les haga variar sus posiciones levemente a lo largo del tiempo, por ejemplo la Estrella Polar. Estas estrellas fijas pueden ser o no de nuestra galaxia.

La astronomía lejana comprende el estudio de los objetos visibles fuera de nuestra galaxia, donde encontramos otras galaxias que contienen, como la nuestra, miles de millones de estrellas a su vez. Las galaxias pueden no ser visibles dependiendo de si su centro de gravedad absorbe la materia (v. agujero negro), son demasiado pequeñas o simplemente son galaxias oscuras cuya materia no tiene luminosidad. Las galaxias a su vez derivan alejándose unas de otras cada vez más, lo que apoya la hipótesis de que nuestro universo actualmente se expande.

Las galaxias más cercanas a la nuestra (aproximadamente 30) son denominadas el grupo local. Entre estas galaxias se encuentran algunas muy grandes como Andrómeda, nuestra Vía Láctea y la Galaxia del Triángulo.

Cada galaxia tiene propiedades diferentes, predomino de diferentes elementos químicos y formas (espirales, elípticas, irregulares, anulares, lenticulares, en forma de remolino, o incluso con forma espiral barrada entre otras más sofisticadas como cigarros, girasoles, sombreros, etc.).

[editar] Cosmología

Artículo principal: Cosmología
Artículo principal: Cosmología física

La cosmología en rasgos generales estudia la historia del universo desde su nacimiento. Hay numerosos campos de estudio de esta rama de la astronomía. Varias investigaciones conforman la cosmología actual, con sus postulados, hipótesis e incógnitas.

La cosmología física comprende el estudio del origen, la evolución y el destino del Universo utilizando los modelos terrenos de la física. La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de diversos acontecimientos y descubrimientos encadenados durante dicho período.

[editar] Formación y evolución de las estrellas
Artículo principal: Formación estelar
Artículo principal: Evolución estelar

[editar] Astronáutica

Artículo principal: Astronáutica

[editar] Expediciones espaciales

Astronomía estelar, Evolución estelar: La nebulosa de hormiga (Mz3). La expulsión de gas de una estrella moribunda en el centro muestra patrones simétricos diferentes de los patrones caóticos esperados de una explosión ordinaria.

[editar] Hipótesis destacadas

[editar] Apéndices

[editar] Apéndice I - Astrónomos relevantes en la Historia

Artículo principal: Astrónomo

A lo largo de la historia de toda la humanidad ha habido diferentes puntos de vista con respecto a la forma, conformación, comportamiento y movimiento de la tierra, hasta llegar al punto en el que vivimos hoy en día. Actualmente hay una serie de teorías que han sido comprobadas científicamente y por lo tanto fueron aceptadas por los científicos de todo el mundo. Pero para llegar hasta este punto, tuvo que pasar mucho tiempo, durante el cual coexistieron varias teorías diferentes, unas más aceptadas que otras. A continuación se mencionan algunas de las aportaciones más sobresalientes realizadas a la Astronomía.

Tales de Mileto

Siglo VII a. C. Aproximadamente

Concibió la redondez de la tierra.
Teorizó que la Tierra era una esfera cubierta por una superficie redonda que giraba alrededor de esta (así explicaba la noche) y que tenía algunos agujeros por los cuales se observaba, aun en la oscuridad nocturna, un poco de la luz exterior a la tierra; la que él llamo "fuego eterno".

Discípulos de Pitágoras

Siglo V a. C. Aproximadamente

Sostuvieron que el planeta era esférico y que se movía en el espacio.
Tenían evidencia de nueve movimientos circulares; los de las estrellas fijas, los de los 5 planetas, los de la Tierra, la Luna y el Sol.

Platón

del 427 a. C. al 347 a. C.

Dedujo que la Tierra era redonda basándose en la sombra de esta sobre la Luna durante un eclipse lunar.
Concibió a la Tierra inmóvil y como centro del Universo.

Aristóteles

del 384 a. C. - 322 a. C.

Sostenía que la Tierra era inmóvil y, además era el centro del Universo.

Aristarco de Samos

del 310 a. C. al 230 a. C.

Sostenía que la Tierra giraba, que se movía y no era el centro del Universo, proponiendo así el primer modelo heliocéntrico. Además determinó la distancia Tierra-Luna y la distancia Tierra-Sol.

Eratóstenes

del 276 a. C. al 194 a. C.

Su contribución fue el cálculo de la circunferencia terrestre.

Hiparco de Nicea

Año 150 a. C.

Observó y calculó que la Tierra era esférica y estaba fija.
El Sol, la Luna y los planetas giraban alrededor de su propio punto.

Posidonio de Apamea

del 135 a. C. al 31 a. C.

Observó que las mareas se relacionaban con las fases de la Luna.

Claudio Ptolomeo

Año 140.

Elaboró una enciclopedia astronómica llamada Almagesto.

Nicolás Copérnico

(1477 - 1543).

Consideró al sol en el centro de todas las órbitas planetarias.

Galileo Galilei

(1564 - 1642).

Con su telescopio observó que Júpiter tenía cuatro lunas que lo circundaban.
Observó las fases de Venus y montañas en la Luna.
Apoyó la teoría de Copérnico.

Johannes Kepler

(1571 - 1630).

Demostró que los planetas no siguen una órbita circular sino elíptica respecto del Sol en un foco del elipse derivando de esto en su primera ley.
La segunda ley de Kepler en la cual afirma que los planetas se mueven más rápidamente cuando se acercan al Sol que cuando están en los extremos de las órbitas.
En la tercera ley de Kepler establece que los cuadrados de los tiempos que tardan los planetas en recorrer su órbita son proporcionales al cubo de su distancia media al Sol.

Isaac Newton

(1642 - 1727).

Estableció la ley de la Gravitación Universal:

“Las fuerzas que mantienen a los planetas en sus órbitas deben ser recíprocas a los cuadrados de sus distancias a los centros respecto a los cuáles gira”.

Estableció el estudio de la gravedad de los cuerpos.
Probó que el Sol con su séquito de planetas viaja hacia la constelación del Cisne.

Albert Einstein

(1879 - 1955).

Desarrolló su Teoría de la Relatividad.

[editar] Ampliaciones

Entre otros:

[editar] Apéndice II - Ramas de la astronomía

Debido a la amplitud de su objeto de estudio la Astronomía se divide en diferentes ramas. Aquellas ramas no están completamente separadas. La astronomía se encuentra dividida en cuatro grandes ramas:

Astronomía planetaria o Ciencias planetarias: un fenómeno similar a un tornado en Marte. Fotografiado por el Mars Global Surveyor, la línea larga y oscura está formada por un vórtice de la atmósfera marciana. El fenómeno toca la superficie (mancha negra) y asciende por la orilla del cráter. Las vetas a la derecha son dunas de arena del fondo del cráter.
  • Mecánica celeste. Tiene por objeto interpretar los movimientos de la astronomía de posición, en el ámbito de la parte de la física conocida como mecánica, generalmente la newtoniana (Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de los planetas alrededor del Sol, de sus satélites, el cálculo de las órbitas de cometas y asteroides. El estudio del movimiento de la Luna alrededor de la Tierra fue por su complejidad muy importante para el desarrollo de la ciencia. El movimiento extraño de Urano, causado por las perturbaciones de un planeta hasta entonces desconocido, permitió a Le Verrier y Adams descubrir sobre el papel al planeta Neptuno. El descubrimiento de una pequeña desviación en el avance del perihelio de Mercurio se atribuyó inicialmente a un planeta cercano al Sol hasta que Einstein la explicó con su Teoría de la Relatividad.
  • Astrofísica. Es una parte moderna de la astronomía que estudia los astros como cuerpos de la física estudiando su composición, estructura y evolución. Sólo fue posible su inicio en el siglo XIX cuando gracias a los espectros se pudo averiguar la composición física de las estrellas. Las ramas de la física implicadas en el estudio son la física nuclear (generación de la energía en el interior de las estrellas) y la física de la relatividad. A densidades elevadas el plasma se transforma en materia degenerada; esto lleva a algunas de sus partículas a adquirir altas velocidades que deberán estar limitadas por la velocidad de la luz, lo cual afectará a sus condiciones de degeneración. Asimismo, en las cercanías de los objetos muy masivos, estrellas de neutrones o agujeros negros, la materia que cae se acelera a velocidades relativistas emitiendo radiación intensa y formando potentes chorros de materia.
  • Cosmología. Es la rama de la astronomía que estudia los orígenes, estructura, evolución y nacimiento del universo en su conjunto.

[editar] Apéndice III - Campos de estudio de la astronomía

[editar] Campos de estudio principales

Astronomía extragaláctica: lente gravitacional. Esta imagen muestra varios objetos azules con forma de anillo, los cuales son imágenes múltiples de la misma galaxia, duplicados por el efecto de lente gravitacional del grupo de galaxias amarillas en el centro de la fotografía. La lente es producida por el campo gravitacional del grupo que curva la luz aumentando y distorsionando la imagen de objetos más distantes.
  • Astrometría. Estudio de la posición de los objetos en el cielo y su cambio de posición. Define el sistema de coordenadas utilizado y la cinemática de los objetos en nuestra galaxia.
  • Cosmología. Estudio del origen del universo y su evolución. El estudio de la cosmología es la máxima expresión de la astrofísica teórica.
  • Evolución estelar. Estudio de la evolución de las estrellas desde su formación hasta su muerte como un despojo estelar.
  • Formación estelar. Estudio de las condiciones y procesos que llevan a la formación de estrellas en el interior de nubes de gas.
  • Astrobiología. Estudio de la aparición y evolución de sistemas biológicos en el universo.

[editar] Otros campos de estudio

[editar] Campos de la astronomía por la parte del espectro utilizado

Atendiendo a la longitud de onda de la radiación electromagnética con la que se observa el cuerpo celeste la astronomía se divide en:

[editar] Apéndice IV - Exploraciones espaciales más relevantes

[editar] Apéndice V - Investigaciones activas y futuras

[editar] Investigadores relevantes

[editar] Observatorios terrestres

[editar] Observatorios espaciales

Proyectos futuros

Base Lunar

La NASA ha informado recientemente la posibilidad de crear una base espacial en la Luna, debido a que las recientes investigaciones han revelado la presencia de agua en dicho lugar. El objetivo de este proyecto es, instalar una colonia, la cual sirva de estacion espacial para albergar a los futuros viajeros y, asi, reducir el gasto de combustible, es decir; una aeronave espacial necesita una gran cantida de combustible (Hidrógeno y O2 ) para poder despegar de la tierra y abandonar el campo gravitatorio, (que obiamente es lo que produce ese gasto)quedandose la nave con poca cantidad de combustible para hacer las tareas necesarias. Pero si contamos con una base Lunar esto seria diferente, porque la aeronave haria una pequeña escala en la Luna, en la cual aprovecharia a reabastecerse de combustible, Hidrogeno que esta presente en el Agua (H2O). Otro factor aprovechable es la gravedad lunar: La gravedad de la Luna es mucho menor que la de la Tierra, por lo cual, es despegue seria mucho mas "liviano", y el gasto de combustible no seria tan grande. Es, un gran proyecto que, segun la Agencia Espacial Norteamericana es la antesala a la llegada del hombre a Marte. Sin duda, este proyecto marca un nuevo retorno, después de más de 30 años de ausencia humana en la Luna, lo cual genera una nueva controversia en la carrera espacial.

[editar] Apéndice VI - Líneas de tiempo en astronomía

[editar] Véase también

[editar] Referencias

  1. H. Roth, A Slowly Contracting or Expanding Fluid Sphere and its Stability, Phys. Rev. (39, p;525–529, 1932)
  2. A.S. Eddington, Internal Constitution of the Stars

[editar] Bibliografía

Por orden alfabético del título de las obras:

  • Astronomía, José Luis Comellas. Editorial Rialp (1983).
  • Astronomía Elemental, Vol. I: Astronomía Básica, Isaías Rojas Peña. Ediciones USM (2010). ISBN: 978-956-332-536-2
  • Cosmos, Carl Sagan. Editorial Planeta (1980).
  • Curso de Astronomía general, Bakulin, Kononóvich y Moroz. Editorial MIR (1987).
  • De Saturno a Plutón, Isaac Asimov. Alianza Editorial (1984).
  • El cometa Halley, José Luis Comellas y Manuel Cruz. Aula Abierta Salvat, Salvat Editores (1985).
  • El mundo de los planetas, Wulff Heintz. Ediciones Iberoamericanas (1968).
  • El nuevo Sistema Solar, varios autores. Libros de "Investigación y Ciencia". Editorial Prensa Científica (1982).
  • Guía de las Estrellas y los Planetas, Patrick Moore. Ediciones Folio (1982).
  • Historia del Telescopio, Isaac Asimov. Alianza Editorial (1986).
  • Introducción a la Astrofotografía, José García García. Equipo Sirius.
  • La exploración de Marte, José Luis Sérsic. Editorial Labor (1976).
  • Objetivo Universo, Alejandro Feinstein, Horacio Tignanelli. Ediciones Colihue (1996).
  • Planetas del Sistema Solar, Mijail Márov. Editorial MIR (1985).
  • Sol, lunas y planetas. Erhard Keppler. (Ed. Salvat Editores, Biblioteca Científica Salvat, 1986).

[editar] Enlaces externos