Blogia
petalofucsia

CIENCIA7: ¿SIN MATERIA, HAY TIEMPO?. AQUÍ SE HABLABA DE QUE AL PRINCIPIO HABÍA METAFÍSICA. Materia es todo aquello que ocupa un lugar en el espacio. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.

Materia

De Wikipedia, la enciclopedia libre
Para otros usos de este término, véase Materia (desambiguación).

Materia es todo aquello que ocupa un lugar en el espacio. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.

También se usa el término para designar al tema que compone una obra literaria, científica, política, etc. Esta distinción da lugar a la oposición "materia-forma", considerando que una misma materia, como contenido o tema, puede ser tratado, expuesto, considerado, etc. de diversas formas: de estilo, de expresión, de enfoque o punto de vista. Se usa también para hablar de una asignatura o disciplina en la enseñanza.

Contenido

[ocultar]

Concepto físico

En física, se llama materia a cualquier tipo de entidad física que es parte del universo observable, tiene energía asociada, es capaz de interaccionar, es decir, es medible y tiene una localización espaciotemporal compatible con las leyes de la física.

Clásicamente se consideraba que la materia tiene tres propiedades que juntas la caracterizan: que ocupa un lugar en el espacio y que tiene masa y duración en el tiempo.

En el contexto de la física moderna se entiende por materia cualquier campo, entidad, o discontinuidad traducible a fenómeno perceptible que se propaga a través del espacio-tiempo a una velocidad igual o inferior a la de la luz y a la que se pueda asociar energía. Así todas las formas de materia tienen asociadas una cierta energía pero sólo algunas formas de materia tienen masa.

Materia másica

Los constituyentes básicos de la materia másica conocida son los fermiones como los "quarks" (púrpura) y "leptones" (verde). Los bosones (rojo) son "materia no-másica".
Artículo principal: Materia (física)

La materia másica está jerárquicamente organizada en varios niveles y subniveles. La materia másica puede ser estudiada desde los puntos de vista macroscópico y microscópico. Según el nivel de descripción adoptado debemos adoptar descripciones clásicas o descripciones cuánticas. Una parte de la materia másica, concretamente la que compone los astros subenfriados y las estrellas, está constituida por moléculas, átomos, e iones. Cuando las condiciones de temperatura lo permite la materia se encuentra condensada.

Nivel microscópico

El nivel microscópico de la materia másica puede entenderse como un agregado de moléculas. Éstas a su vez son agrupaciones de átomos que forman parte del nivel microscópico. A su vez existen niveles microscópicos que permiten descomponer los átomos en constituyentes aún más elementales, que sería el siguiente nivel son:

A partir de aquí hay todo un conjunto de partículas subatómicas que acaban finalmente en los constituyentes últimos de la materia. Así por ejemplo virtualmente los bariones del núcleo (protones y neutrones) se mantienen unidos gracias a un campo escalar formado por piones (bosones de espín cero). E igualmente los protones y neutrones, sabemos que no son partículas elementales, sino que tienen constituyentes de menor nivel que llamamos quarks (que a su vez se mantienen unidos mediante el intercambio de gluones virtuales).

Nivel macroscópico

Macroscópicamente, la materia másica se presenta en las condiciones imperantes en el sistema solar, en uno de cuatro estados de agregación molecular: sólido, líquido, gaseoso y plasma. De acuerdo con la teoría cinética molecular la materia se encuentra formada por moléculas y éstas se encuentran animadas de movimiento, el cual cambia constantemente de dirección y velocidad cuando chocan o bajo el influjo de otras interacciones físicas. Debido a este movimiento presentan energía cinética que tiende a separarlas, pero también tienen una energía potencial que tiende a juntarlas. Por lo tanto el estado físico de una sustancia puede ser:

  • Sólido: si la energía cinética es menor que la potencial.
  • Líquido: si la energía cinética y potencial son aproximadamente iguales.
  • Gaseoso: si la energía cinética es mayor que la potencial.
  • Plasma: si la energía cinética es tal que los electrones tienen una energía total positiva.

Bajo ciertas condiciones puede encontrarse materia másica en otros estados físicos, como el condensado de Bose-Einstein o el condensado fermiónico.

La manera más adecuada de definir materia másica es describiendo sus cualidades:

  • Presenta dimensiones, es decir, ocupa un lugar en un espacio-tiempo determinado.
  • Presenta inercia: la inercia se define como la resistencia que opone la materia a modificar su estado de reposo o movimiento.
  • La materia es la causa de la gravedad o gravitación, que consiste en la atracción que actúa siempre entre objetos materiales aunque estén separados por grandes distancias.

Materia no-másica

Una gran parte de la energía del universo corresponde a formas de materia formada por partículas o campos que no presentan masa, como la luz y la radiación electromagnética, las dos formada por fotones sin masa.

Otro tipo de partículas de las que no sabemos con seguridad si es másica son los neutrinos que inundan todo el universo y son responsables de una parte importante de toda la energía del universo. Junto con estas partículas no másicas, se postula la existencia de otras partículas como el gravitón, el fotino y el gravitino, que serían todas ellas partículas sin masa aunque contribuyen a la energía total del universo.

Distribución de materia en el universo

Según estimaciones recientes, resumidas en este gráfico de la NASA, alrededor del 70% del contenido energético del Universo consiste en energía oscura, cuya presencia se infiere en su efecto sobre la expansión del Universo pero sobre cuya naturaleza última no se sabe casi nada.

Según los modelos físicos actuales, sólo aproximadamente el 5% de nuestro universo está formado por materia másica ordinaria. Se supone que una parte importante de esta masa sería materia bariónica formada por bariones y electrones, que sólo supondrían alrededor de 1/1850 de la masa de la materia bariónica. El resto de nuestro universo se compondría de materia oscura (23%) y energía oscura (72%).

A pesar que la materia bariónica representa un porcentaje tan pequeño, la mitad de ella todavía no se ha encontrado. Todas las estrellas, galaxias y gas observable forman menos de la mitad de los bariones que debería haber. La hipótesis principal sobre el resto de materia bariónica no encontrada es que, como consecuencia del proceso de formación de estructuras posterior al big bang, está distribuida en filamentos gaseosos de baja densidad que forman una red por todo el universo y en cuyos nodos se encuentran los diversos cúmulos de galaxias. Recientemente (mayo de 2008) el telescopio XMM-Newton de la agencia espacial europea ha encontrado pruebas de la existencia de dicha red de filamentos.[1]

Propiedades de la materia ordinaria

Propiedades generales

Las presentan los sistemas materiales básicos sin distinción y por tal motivo no permiten diferenciar una sustancia de otra. Algunas de las propiedades generales se les da el nombre de extensivas, pues su valor depende de la cantidad de materia, tal es el caso de la masa, el peso, volumen. Otras, las que no dependen de la cantidad de materia sino de la sustancia de que se trate, se llaman intensivas. El ejemplo paradigmático de magnitud intensiva de la materia másica es la densidad.

Propiedades extrínsecas o generales

Son las cualidades que nos permiten reconocer a la materia, como la extensión, o la inercia. Son aditivas debido a que dependen de la cantidad de la muestra tomada. Para medirlas definimos magnitudes, como la masa, para medir la inercia, y el volumen, para medir la extensión (no es realmente una propiedad aditiva exacta de la materia en general, sino para cada sustancia en particular, porque si mezclamos por ejemplo 50 ml de agua con 50 ml de etanol obtenemos un volumen de disolución de 96 ml). Hay otras propiedades generales como la interacción, que se mide mediante la fuerza. Todo sistema material interacciona con otros en forma gravitatoria, electromagnética o nuclear. También es una propiedad general de la materia su estructura corpuscular, lo que justifica que la cantidad se mida para ciertos usos en moles.

Propiedades intrínsecas o específicas

Son las cualidades de la materia independientes de la cantidad que se trate, es decir no dependen de la masa. No son aditivas y, por lo general, resultan de la composición de dos propiedades extensivas. El ejemplo perfecto lo proporciona la densidad, que relaciona la masa con el volumen. Es el caso también del punto de fusión, del punto de ebullición, el coeficiente de solubilidad, el índice de refracción, el módulo de Young, etc.

Propiedades químicas

Son aquellas propiedades distintivas de las sustancias que se observan cuando reaccionan, es decir, cuando se rompen o se forman enlaces químicos entre los átomos, formándose con la misma materia sustancias nuevas distintas de las originales. Las propiedades químicas se manifiestan en los procesos químicos (reacciones químicas), mientras que las propiamente llamadas propiedades físicas, se manifiestan en los procesos físicos, como el cambio de estado, la deformación, el desplazamiento, etc.

Ejemplos de propiedades químicas:

Ley de la conservación de la materia

Como hecho científico la idea de que la masa se conserva se remonta al químico Lavoisier, el científico francés considerado padre de la Química moderna que midió cuidadosamente la masa de las sustancias antes y después de intervenir en una reacción química, y llegó a la conclusión de que la materia, medida por la masa, no se crea ni destruye, sino que sólo se transforma en el curso de las reacciones. Sus conclusiones se resumen en el siguiente enunciado: En una reacción química, la materia no se crea ni se destruye, solo se transforma. El mismo principio fue descubierto antes por Mijaíl Lomonosov, de manera que es a veces citado como ley de Lomonosov-Lavoisier, más o menos en los siguientes términos: La masa de un sistema de sustancias es constante, con independencia de los procesos internos que puedan afectarle, es decir, "La suma de los productos, es igual a la suma de los reactivos, manteniéndose constante la masa". Sin embargo, tanto las telas modernas como el mejoramiento de la precisión de las medidas han permitido establecer que la ley de Lomonosov-Lavoisier, se cumple sólo aproximadamente.

La equivalencia entre masa y energía descubierta por Einstein obliga a rechazar la afirmación de que la masa convencional se conserva, porque masa y energía son mutuamente convertibles. De esta manera se puede afirmar que la masa relativísta equivalente (el total de masa material y energía) se conserva, pero la masa en reposo puede cambiar, como ocurre en aquellos procesos relativísticos en que una parte de la materia se convierte en fotones. La conversión en reacciones nucleares de una parte de la materia en energía radiante, con disminución de la masa en reposo; se observa por ejemplo en procesos de fisión como la explosión de una bomba atómica, o en procesos de fusión como la emisión constante de energía que realizan las estrellas.

Concepto filosófico

Desde el comienzo de la filosofía, y en casi todas las culturas, se encuentra este concepto vagamente formulado como lo que permanece por debajo de las apariencias cambiantes de las cosas de la naturaleza. Según esa idea, todo lo observable está dado en sus diversas y cambiantes apariencias en un soporte o entidad en la que radica el movimiento y cambio de las cosas: la materia.

Principio único o diversos

Una cuestión filosófica importante fue si toda la materia o sustrato material tenía un principio único o tenía diversas fuentes. Que dicho sustrato sea uno sólo, o varios principios materiales, (aire, fuego, tierra y agua), fue cuestión planteada por los filósofos milesios; los eleatas, en cambio, cuestionaron la realidad del movimiento y, junto con los pitagóricos, fundamentaron el ser en un principio formal del pensamiento, dejando a la materia meramente como algo indeterminado e inconsistente, un no-ser.

El atomismo

Mayor trascendencia histórica ha tenido la teoría atomista de la antigüedad, puesta de nuevo en vigor por el mecanicismo racionalista en el siglo XVII y XVIII, que supuso el soporte teórico básico para el nacimiento de la ciencia física moderna.

Hilemorfismo

Platón y sobre todo Aristóteles elaboraron el concepto de forma, correlativo y en contraposición a la materia, dándole a ésta el carácter metafísico y problemático que ha tenido a lo largo de la historia del pensamiento, al mismo tiempo que ha servido como concepto que se aplica en otros contextos.

Es Aristóteles quien elaboró el concepto de materia de manera más completa, si bien el aspecto metafísico quedó relegado a la escolástica.

Para Aristóteles, siguiendo la tradición de los milesios y de Platón, la característica fundamental de la materia es la receptividad de la forma. La materia puede ser todo aquello capaz de recibir una forma. Por eso ante todo la materia es potencia de ser algo, siendo el algo lo determinado por la forma.

En función de este concepto hay tantas clases de materias como clases de formas capaces de determinar a un ser. Puesto que el movimiento consiste en un cambio de forma de la sustancia, el movimiento se explica en función de la materia como potencia y el acto como forma de determinación de la sustancia.

La materia, en tanto que sustancia y sujeto, es la posibilidad misma del movimiento. Hay tantas clases de materia cuantas posibles determinaciones de la sustancia en sus predicados.

Cuando las determinaciones son accidentales la materia viene dada por la situación de la sustancia en potencia respecto a recepción de una nueva forma. Así el estar sentando en acto es materia en potencia para estar de pie; el movimiento consiste en pasar de estar de pie en potencia, a estar de pie en acto.

El problema es la explicación del cambio sustancial que se produce en la generación y corrupción de la sustancia. Aparece aquí el concepto metafísico de materia prima, pura potencia de ser que no es nada, puesto que no tiene ninguna forma de determinación.

La tradicional fórmula escolástica por la que se suele definir la materia prima da idea de que realmente es difícil concebir una realidad que se corresponda con dicho concepto: No es un qué (sustancia), ni una cualidad, ni una cantidad ni ninguna otra cosa por las cuales se determina el ser. Una definición meramente negativa que incumple las leyes mismas de la definición. Pura posibilidad de ser que no es nada.

Sin embargo el concepto aristotélico de materia ha tenido aplicaciones en diversos sentidos.

 

Errores comunes al estudiar la materia

Diferencia nominativa de magnitudes cuantificables

Sabemos que dentro de la clasificación de propiedades y magnitudes cuantificables existe el criterio: propiedades físicas y químicas. En el caso de las propiedades físicas, estas se subdividen en escalares, vectoriales y tensoriales. Dentro de las propiedades físicas tenemos la masa y dentro de las propiedades vectoriales está el peso. Ahora bien, por la tergiversación de los conceptos mismos y por el mal uso cotidiano de las propiedades de la materia, se nomina la masa como peso, siendo estas dos propiedades diametralmente opuestas. Una es la cantidad de materia que hay en un sistema que ocupe algún volumen en el espacio y la segunda es la medida de la fuerza que ejerce la gravedad sobre la masa misma.

Otro error muy común es la asignación de nombre a señaléticas (los cuales en muchos casos no corresponde). Cuando en una carretera se asigna un letrero que dice: "Disminuir la velocidad al entrar a la ciudad" o "Velocidad máxima: 120 km/h"; todos estos son erróneos, puesto que la velocidad es una magnitud vectorial y contempla en ella no solo el valor (módulo) al que se desplace el móvil, sino que a la dirección, sentido, punto de aplicación y punto de origen de este. En esos casos, deberíaa decir: Rapidez máxima. Y por esto mismo, el instrumento de medición de los vehículos se llama en realidad rapidímetro u oggmetro, pero jamás Velocímetro (esto es una nominación y uso incorrecto del concepto en su correcta acepción). Si vemos como un todo en el universo se puede comprender este concepto.

Miscelánea

  • El kilogramo es una unidad de la cantidad de materia, corresponde a la masa de un dm³ (1 litro) de agua pura a 4 °C de temperatura. A partir de esta medida, se creó un bloque de platino e iridio de la misma masa que se denominó kilogramo patrón. Éste se conserva en la Oficina Internacional de Pesos y Medidas de Sèvres (Francia).
  • La cantidad de materia también puede ser estimada por la energía contenida en una cierta región del espacio, tal como sugiere la fórmula E = m.c² que da la equivalencia entre masa y energía establecida por la teoría de la relatividad de Albert Einstein.
  • "Tabla de densidades" en [kg/m3]: Osmio 22300, Oro 19300 - Hierro 7960 - Cemento 3000 - Agua 1000 - Hielo 920 - Madera 600 a 900 - Aire 1,29.
  • La temperatura es una magnitud que indica el grado de agitación térmica de una sustancia. Asimismo, cuando dos sustancias que están en contacto tienen distintas temperaturas se produce una transferencia de energía térmica (en forma de calor) hasta igualar ambas temperaturas. En el momento en que se igualan las temperaturas se dice que estas dos sustancias están en equilibrio térmico.
  • Los tres elementos químicos más abundantes en el universo son H, He y C; algunas de sus propiedades más importantes son:
    • Hidrógeno (H2): Densidad = 0,0899 kg/m³ Teb = -252,9 °C, Tf =-259,1 °C.
    • Helio (He): Densidad = 0,179 kg/m³ Teb = -268,9 °C, Tf = -272,2 °C.
    • Carbono (C): Densidad = 2267 kg/m³ Teb = 4027 °C, Tf = 3527 °C.

Véase también

Referencias

Enlaces externos

¿Y esta publicidad? Puedes eliminarla si quieres
¿Y esta publicidad? Puedes eliminarla si quieres

0 comentarios

¿Y esta publicidad? Puedes eliminarla si quieres