Blogia
petalofucsia

MATEMÁTICAS2: REGRESIÓN. La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

Análisis de la regresión

De Wikipedia, la enciclopedia libre
(Redirigido desde Regresión (estadística))

La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

Contenido

[ocultar]

[editar] Origen del concepto

El término regresión fue introducido por Francis Galton en su libro Natural inheritance (1889) y fue confirmada por su amigo Karl Pearson. Su trabajo se centró en la descripción de los rasgos físicos de los descendientes (variable A) a partir de los de sus padres (variable B). Estudiando la altura de padres e hijos a partir de más de mil registros de grupos familiares, se llegó a la conclusión de que los padres muy altos tenían una tendencia a tener hijos que heredaban parte de esta altura, pero que revelaban también una tendencia a regresar a la media. Galton generalizó esta tendencia bajo la "ley de la regresión universal": «Cada peculiaridad en un hombre es compartida por sus descendientes, pero en media, en un grado menor.»

[editar] Modelos de regresión

[editar] Regresión lineal

Artículo principal: Regresión lineal
  • Regresión lineal simple

Dadas dos variables (Y: variable dependiente; X: independiente) se trata de encontrar una función simple (lineal) de X que nos permita aproximar Y mediante: Ŷ = a + bX

a (ordenada en el origen, constante)b (pendiente de la recta)A la cantidad e=Y-Ŷ se le denomina residuo o error residual.

Así, en el ejemplo de Pearson: Ŷ = 85 cm + 0,5X

Donde Ŷ es la altura predicha del hijo y X la altura del padre: En media, el hijo gana 0,5 cm por cada cm del padre.
  • Regresión lineal múltiple

[editar] Regresión no lineal

Artículo principal: Regresión no lineal

[editar] Enlaces externos

¿Y esta publicidad? Puedes eliminarla si quieres
¿Y esta publicidad? Puedes eliminarla si quieres

0 comentarios

¿Y esta publicidad? Puedes eliminarla si quieres